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Recap: File System (FS)

FS is responsible for
1. storing hierarchical directories and files on a flat disk;
2. translating user read/write to disk addresses

File systems have (1) data ; (2) metadata

1. Data: user data

2. Metadata: user and fs informations (name, creation
time, storage location) etc.

Important data structures: inode (stores file system
metadata, and location of data)

More: free bitmaps, extent maps, superblock, etc.

(root directory)

o R s R

[ocar ] [on ] [o0 ] [ ] @

- directory

[ mystutt | | private | [ nisstutt | | publick |

Background reading: chapter 40, File System Implementation, http://pages.cs.wisc.edu/~remzi/OSTEP/file-implementation.pdf
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Recap: File System (FS)
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For example, ext2, https://wiki.osdev.org/Ext2 and

https:

iazza.com/class_profile/get resource/il71xflix3116f/inz4wsb2m0Ow20z
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Why Do we really need a new file system?

NAND Flash SSD, even though “semantically” is
like HDD (read/write sectors), internally it has:

e Mixed performance spectrum:
o Very good sequential performance
o Good random read performance
o Poor random write performance
o Very poor small random write performance

FTL implementation

GC interference
Chip-die-plane parallelism
Wear-leveling

Error handling

NAND Flash Chips

Controller

DRAM Cache

NAND Flash Die Layout"

M oie
II Plane

Block

Page



What happens if we just ighore it

Technically we can just run any file system. Sure it will work, but

Poor degraded performance
Unpredictable performance (cloud providers do not like this!)

Poor reliability during related failures (e.g., wearing metadata areas)
Poor device lifetime

Hwhn =

Bad things will happen :( Let's do our best try to avoid bad things.
Recall: we talked about how a “log” is a perfect match for flash-based 1/0

e Immutable, sequential, transactional — perfect for flash !



Interestingly enough ...

The Design and Implementation of a
Log-Structured File System

MENDEL ROSENBLUM and JOHN K. OUSTERHOUT
University of California at Berkeley

This paper presents a new technique for disk storage management called a log-structured file
system. A log-structured file system writes all modifications to disk sequentially in a log-like
structure, thereby speeding up both file writing and crash recovery. The log is the only structure
on disk; it contains indexing information se that files can be read back from the log efficiently.
In order to maintain large free areas on disk for fast writing, we divide the log into segments and
use a segment cleaner to compress the live information from heavily fragmented segments. We
present a series of simulations that demonstrate the efficiency of a simple cleaning policy based
on cost and benefit. We have implemented a prototype log-structured file system called Sprite
LFS; it outperforms current Unix file systems by an order of magnitude for smallfile writes
while matching or exceeding Unix performance for reads and large writes. Even when the
overhead for cleaning is included, Sprite LFS can use 70% of the disk bandwidth for writing,
whereas Unix file systems typically can use only 5-10%.

Categories and Subject Descriptors: D 4.2 [Operating Systems]: Storage Management—alloc-
ation | dealls ion strategies; secondary storage; D 4.3 [Operating Systems]: File Systems Man-
agement— file organization, directory structures, access methods; D.4.5 {Operating Systems]:
Reliability —checkpomnt [ restart; D.4.8 [Operating Systems): Performance— measurements, sim-
ulation, operation analysis; H.2,2 [Database Management]: Physical Design--recovery and
restart; H.3 2 [Information Systems]: Information Storage—file organization

General Terms: Algorithms, Design, Measurement, Performance

Additional Key Words and Phrases: Disk storage management, fast crash recovery, file system
organization, file system performance, high write performance, logging, log-structured, Unix

A Log-structured file system (SpriteFS) was
investigated back in the early 1990s

Highly influential work

Can you guess why such a design would make
sense back in 1992 for a HDD based fs?

Mendel Rosenblum and John K. Ousterhout. 1992. The design and implementation of a log-structured file system. ACM
Trans. Comput. Syst. 10, 1 (Feb. 1992), 26-52. DOI:https://doi.org/10.1145/146941.146943



https://doi.org/10.1145/146941.146943

Why Log-Structured file system (LFS) in 1992?

1. The amount of system DRAM was increasing
a. More opportunity to cache data and serve “read” requests from DRAM
b. DRAM is random access, hence, good “read” performance

2. Access to disk will dominated by “writes”
a. Writes can be sequential and random
b. Writes can be small (metadata) and large (data) - large writes are OK, but small writes are really
bad. Plus random writes for metadata updates --- really really bad

3. Hence, use a log-structured file system optimized for servicing fast writes
a. Random “read” (metadata) not so much — must be served from the buffer cache

It turned out that “log” is a very useful data structure for write-once media as well (like NAND
flash). But how do you make a working file system on a log? How to do you find inodes? and what
happens when a log is full?



The basic idea of an LFS

With an LFS, there cannot be a single known location where inodes are stored, the
location changes every time an inode is updated

Direct
Data Blocks

LFS’s goal is to optimize inode metadata lookups -- why?

Inode

Information

All new writes are written to the log in a
sequential manner, and then a “inode map”
structure is written to identify their locations

inode maps are written to the log after each (or batch of) updates
LFS’s checkpoint region contains all inode maps information

Inode maps are typically cached in the buffer cache for fast lookups

http://www.cs.cornell.edu/courses/cs4410/2014fa/slides/13-Ifs.pdf
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Simple example

Let's say we want to create /dirl/filel

Data block e | ; >

File inode block On-disk log

File inode contains the disk offsets for these pointers 10



Simple example

Let's say we want to create /dirl/filel

Data block
File inode block
Directory data block

Directory inode block

fd = file data
fi =file inode
dd = directory data
di = directory inode

A

fd || fi

i N
\

<

dd | di | : >
— ;

File entries
Name: “file1”

O
O
O

ctime: Jan 1st, 1970
Inode number, offset
permissions

Remember directories are just special files with a

special format to keep track of all other files and
directories inside it

11



Simple example

Let's say we want to create another /dir2/file2

file1

Data block
File inode block
Directory data block

Directory inode block

2 S A AN

fd

fi

dd

di

. | —>

/'

dir2

Typically these updates are buffered in the DRAM cache
and then written out in a single large sequential
segments to amortize the disk seek cost

12



Simple example

Two locations: /dirl/filel and /dir2/file2

file1

Data block
File inode block

Directory data block

Directory inode block

AN\ N\ AN\ N\

fd

fi

dd

di

x

dirl #inode

dir2 #inode

1

!

t

t

filel #inode :
file2 #inode :

: offsetl
: offset2

offset3
offset4d

Every time a file is created, modified, and updated, the new data blocks
with the new version of inodes are written to the log

When a file is deleted, a NULL inode is written to mark a file deleted

There is an in-memory big inode map table that has the latest offset
entries for all inode locations written to the log (optimization, not necessary
for the correctness)




Simple example

In-memory Inode map Table

Inode number 100 : offsetl
Inode number 200 : offset2

Data block

File inode block
Directory data block m

In case there are concurrent updates

— The last one wins

— in case there is a crash, the in-memory
table can be build again by scanning the log
at the mount time

Directory inode block

14



Simple example

Data block

File inode block

Directory data block

Directory inode block

In-memory Inode map Table

Inode number 100 : offsetl
Inode number 200 : offset2

In case there are concurrent updates

— The last one wins

— in case there is a crash, the in-memory
table can be build again by scanning the log
at the mount time

Block 5

Super Checkpoint || Checkpoint

Log —

The one thing it has to remember is where is the root inode location - that can be stored when

the LogFS does checkpointing (like any other file system). The initial SuperBlock location and 2x
checkpoint regions are fixed (stores inode map table, root inode location etc.)

15



What happens when a log become full?

The log is divided into large “segments” which are the unit of cleaning (typically 10-100MBs, anyone Zones?)

So what can be done with this design? Two options:

segments ﬁ ﬁ

new log starts new log ends

16



What happens when a log become full?

The log is divided into large “segments” which are the unit of cleaning (typically 10-100MBs, anyone Zones?)

So what can be done with this design? Two options:

Segmenﬁ/ﬁ/\ﬁ\
new log starts new log ends

pointeU J J

Threading

Compaction

17



What happens when a log become full?

The log is divided into large “segments” which are the unit of cleaning (typically 10-100MBs, anyone Zones?)

So what can be done with this design? Two options:

new log starts jﬁlogends\

[——— 1

Threading : no explicit garbage collection, fast, but metadata to keep track of holes, random accesses

Compaction : explicit garbage collection phase, copy cost, but gives nice clean blocks with less overheads

Sprite LFS used a hybrid: segments is always written sequentially and then copy and compacted
However, the log is threaded segment-by-segment basis

18



The log cleaning

Segments are the unit of GC cleaning

After each segment there is a segment summary block to keep track of “live”
and “dead” blocks
e How does FTL keep track of this?

Everytime GC is invoked - it need to select a target/victim segment for cleaning

At the time of cleaning, when data is being re-arranged, the GC has an
opportunity to re-arrange blocks in a segment to pack “hot and cold” data
separately (lazy classification)

19



Segment cleaning logic: Picking up a victim

Greedy Cost-Benefit Analysis

. total bytes read and written
write cost =

new data written

read segs + write live + write new

_ , benefit  free space generated*age of data (1 — u)*age
new data written —

N + N*u + N*(1 — ) 9 N cost cost 1+ u

N*(1 — u) T 1-u

Goal: the goal is is to create one clean segment for every new segment data written

Greedy picks up the most utilized segment (“u” is utilization between 0 and 1), “N” is the number of
pages in a segment

Cost-benefit analysis does include the “hotness” or “age” of data (the last time data was updated) and
how much space we will free (1 - u), with total work (1 (read) + u (write))

For FTL: These mechanisms are exactly the same (now with formulas) what we discussed in the
context of GC, and even actually inspired many “victim” selection policies in FTL/GC implementations



Segment cleaning logic: Picking up a victim

Greedy Cost-Benefit Analysis

. total bytes read and written
write cost =

new data written

- What is missing here?
Should | apply these formulas as it is in my FTL?

el aW ~

e

For FTL: These mechanisms are exactly the same (now with formulas) what we discussed in the

context of GC, and even actually inspired many “victim” selection policies in FTL/GC implementations o



Why Log-Structured FSes were not good enough

1. Segment cleaning overheads in Log-Structured file systems

a. The Achilles heel for LogFS : a long and interesting debate
I.  “the impact of the cleaner is so severe that BSD-LFS cannot compete with either FFS or EFS. For the tests
presented here, the disk was running at 85% utilization, and the cleaner was continually running. Note
that FFS and EFS allocate up to 90% of the disk capacity without exhibiting any performance
degradation” (https://www.hhhh.org/perseant/Ifs/Ifs for unix.pdf, page 16)
b. Not expressive enough for modern file system workloads
i. Dominated by random, small I/0 on files (stresses the primitive segment cleaning)
c. How would you identify hot/cold data? Is there a FS API?

2. Ignoring the device characteristics

a. Different sector, page, block sizes and layouts
Multiple read/write possible at the same time
Not all random writes are the same
Different read, write, and GC cost and granularities
Performance vs. utilization

® 2N T

22
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The Semantic Gap: File Systems and FTL

Both, FTL designs and Log-Structured file systems advocate to separate cold from
hot data

In-place update file systems like FAT32 or ext4
e The FTL can identify hot and cold data by keeping track of #invalidation

But in a log-structured file system, the same page is not written twice. How does
the FTL knows now? Open challenge

Generally this problem is known as “Semantic Gap” between layers, exists in
multiple systems fields like virtualization, networking, storage, etc.

= risen from Modularity and Layering principles

23



SFS: Random Write Considered Harmful in Solid State Drives

(2012)

Improving the semantic gap by letting the FS
maintain hotness statistics actively

e Hotness is maintained on the File Block (or offset),
not its address (that changes in an LFS)

e C(lassify Files, FB, and segments into different
hotness groups

e  Use this hotness statistics to do better victim segment
selection for GC

e Do an “eager” classification than a “lazy” one as proposed in
the original LFS paper

Goal: This makes the life of the device-side FTL easy(-ier)

SFS: Random Write Considered Harmful in Solid State Drives

Changwoo Min?, Kangnyeon Kim”, Hyunjin Cho®, Sang-Won Lee?, Young Ik Eom*
abde Syngkyunkwan University, Korea
““Samsung Electronics, Korea
{multics69°, kangnuni® wonlee?,yicom® } @ece.skku.ac.kr, hj1120.cho® @samsung.com

Abstract

Over the last decade we have witnessed the relent-
less technological improvement in flash-based solid-
state drives (SSDs) and they have many advantages over
hard disk drives (HDDs) as a secondary storage such as
performance and power consumption. However, the ran-
dom write performance in SSDs still remains as a con-
cern. Even in modern SSDs, the disparity between ran-
dom and sequential write bandwidth is more than ten-
fold. Moreover, random writes can shorten the limited
lifespan of SSDs because they incur more NAND block
erases per write.

In order to overcome these problems due to random
writes, in this paper, we propose a new file system
for SSDs, SFS. First, SFS exploits the maximum write
bandwidth of SSD by taking a log-structured approach.
SES transforms all random writes at file system level to
sequential ones at SSD level. Second, SFS takes a new
data grouping strategy on writing, instead of the existing
data separation strategy on segment cleaning. It puts the
data blocks with similar update likelihood into the same
segment. This minimizes the inevitable segment clean-
ing overhead in any log-structured file system by allow-
ing the segments to form a sharp bimodal distribution of
segment utilization.

The limited lifespan of SSDs remains a critical concern
in reliability-sensitive environments, such as data cen-
ters [S]. Even worse, the ever-increased bit density for
higher capacity in NAND flash memory chips has re-
sulted in a sharp drop in the number of program/erase
cycles from 10K to 5K for the last two years [4]. Mean-
while, previous work [I2 O] shows that random writes
can cause internal fragmentation of SSDs and thus lead
to performance degradation by an order of magnitude. In
contrast to HDDs, the performance degradation in SSDs
caused by the fragmentation lasts for a while after ran-
dom writes are stopped. The reason for this is that ran-
dom writes cause the data pages in NAND flash blocks
to be copied elsewhere and erased. Therefore, the lifes-
pan of an SSD can be drastically reduced by random
writes.

Not surprisingly, researchers have devoted much ef-
fort to resolving these problems. Most of work has been
focused on a flash translation layer (FTL) — an SSD
firmware emulating an HDD by hiding the complex-
ity of NAND flash memory. Some studies [24. im-
proved random write performance by providing more ef-
ficient logical to physical address mapping. Meanwhile,
other studies [221 [I4] propose a separation of hot/cold
data to improve random write performance. However,
such under-the-hood optimizations are purely based on

24



SFS: Basic workings

Hotness is maintained on three levels:
(i) File; (ii) File-Block; and (iii) Segment

e Segment - the same concept as before (GC unit)
e File-Block - file offset (or its logical address)
e  File - can contain multiple file-blocks

Classify writes to [hot, warm, cold, ro]

Segment cleaning is similar to LogFs,
but it also goes through the same path
of writing a segment

Key Difference: Every write is classified (eagerly),
unlike LFS which classifies data when doing GC
(this design helps with managing traffic skewness)

Segment Writing

write request
L

v

1. segment
quantization

Segment Cleaning

not enough free segments

l

1. select victim
segments

|

2. collect dirty blocks
and classify blocks
according to hotness

l

2. read the live blocks
and mark dirty

y

|
v v v Vv
hot warm cold read-only
blocks blocks blocks blocks
v

3. trigger segment
writing

3. schedule segment
writing

I

5 8 8 8

o

segment hotness

N
o
o

_______

o

o
1
!

read-only group

o

0 100 200 300 400 500 600 700 800 900
segment hotness ranking



Cost-Hotness victim selection policy

Recall: we looked at Greedy and Cost-Benefit policies before

benefit  free space generated*age of data (1 — u)*age

In Sprite FS, they just use the ot

cost 1+ u

last modified time as an estimation of hotness

free space generated
. cost-hotness =
SFS uses proposes Cost-Hotness policy ‘ 7 cost * segment hotness

e U_issegment utilization ~ 2U.H,
e H_is segment hotness

Similar logic, but now (more) accurately picks up victim segment for cleaning

26



So, is this effective?

= Zipf TPC.C
i-i6 T
w
=
L]
24
=
=, | .

0 2 T T T

| 2 3 5

Number of group

mSFS mLFS-CB mbtrfs ®btrfs-nodatacow = ext4

Throughput (MB/s)

Multiple number of hotness groups help to

decrease the write cost (WQ)
e (New W data + Old R data + Old W data) /
New W data
e Same as the write amplification but includes
read cost too

SFS beats

(i) LFS-CostBenefit (CB);

(ii) BrtFS (COW-mode);

(iii) BrtFS (no-COW);

(iv) ext4 (which uses logging for data journaling) 27



Flash-Friendly File System (F2FS) (2015)

A index : kernel/git/torvalds/linux.git

.............. g Linux kernel source tree
sssssssssss

about summary refs log [ tree commit diff stats
path: root/fs/f2fs

F2FS: A New File System for Flash Storage

Mode Name

Changman Lee, Dongho Sim, Joo-Young Hwang, and Sangyeun Cho, -TW-T=-- Kconfig
Samsung Electronics Co., Ltd. “TW-F--F-~ Makefile
https:/www.usenix.org/conference/fast15/technical-sessions/presentation/lee ciMzlEsles acloc
W-r--r-- acl.h
-MwW-r--r-- checkpoint.c
~TW-Tr--r-- compress.c
STWER=cRes data.c

Highly influential work

One of the first file systems designed from scratch for NAND flash and is part of the mainline kernel

(production quality):
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/fs/f2fs?h=master
https://www.kernel.org/doc/html/latest/filesystems/f2fs.html

Primary concerns: [ayout and parallelism inside flash devices (+previous best ideas)

28
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F2FS: Disk Layout

‘ Random Writes N Multi-stream Sequential Writes }
| Zone | Zone | | Zone |
| Section | Section | Section | Section | | Section | Section | Section |
Segment Number (o2 f...p L L o 0 0 0 L " " " & 117171 /|
Superb:oct #0 :I Check |Segment Info. | Node Address | Segment Summary Main Area
Superblock #1 point Table Table Area
(CP) (SIT) (NAT) (SSA) 1 1 T T T T
< -
Sector #0 RN i v v v v ¥ v
S e - e Hot/Warm/Cold Hot/Warm/Cold
Ss o - _- - Node segments Data segments

Device is split into:
e Zones: unit of parallelism, can open multiple parallel zones for I/0
o  Sections : unit of cleaning, some multiple of the flash GC units (if known, or large enough)
m  Segments : unit of space allocation (can contain multiple flash pages)

A section stores either (1) Node contains inode (with single, double, triple pointer pages) and indices of data pages;
or (2) Data segments (user data)

Two areas: random writes (F2FS's own metadata) and sequential writes 29



F2FS: Disk Layout

‘ Random Writes N Multi-stream Sequential Writes }
| Zone | Zone | Zone | Zone |
| Section | Section | Section | Section | Section | Section | Section |  Section |
Segment Number (o2 f...p L L o 0 0 0 L " " " & 117171 /|
SuperE:ocl; #0 :I Check |Segment Info. | Node Address | Segment Summary Main Area
Superblock #1 point Table Table Area
(CP) (SIT) (NAT) (SSA) 1 I T T T T
Sector #0 v v g v ¥ -
Hot/Warm/Cold Hot/Warm/Cold
Node segments Data segments

All the file metadata is written in the start Zones (classified as Random Write Zones)

e Superblock : read-only information about the file system

e Check point area (CP) : 2x to switch between stable and active

e Segment Information Table (SIT) : per-segment information, live blocks, used in GC

e Node Address Table (NAT) : address of “nodes” blocks in the Main Area

e Segment Summary Area (SSA) :to identify parent blocks and fs tree

e Main Area : data (metadata and data) segments are written 30



F2FS : File Structure

The file structure is not surprising, follows a typical
“inode” based tree model

There are direct, single, double, and triple indirect
pointers

In original LFS: there is an inode map to translate an
inode number to an on-device location (written at the
end of the segment)

F2FS uses the NAT table to translate an inode number
to its on-device location

This design solves an important problem with log-based
file system: Recursive update problem

/\/\\/\/\\

Inode block

[ ] pata

Metadata

D Direct node

direct pointers
or
inline data

D Indirect node

— N

Inline xattrs

Single-indirect

{3~
|

Double-indirect

Jﬂ—ﬂ%ﬂﬂj

{5

Triple-indirect

31



Update Propagation in LFS vs. F2FS

Fixed location

S
B P

File data File data {

Used for cleaning

Bl U One big fog /
L]

In a Log-Structured file system, updates at the bottom of the tree will be bubbled through the
whole tree (updating device addresses) until reached at the top and a new inode map location is
written - this is called recursive update problem (also known as Wandering Tree problem)

https://www.usenix.org/sites/default/files/conference/protected-files/fast15 slides lee.pdf
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Update Propagation in LFS vs. F2FS

Fixed location Fixed location

ey >
HE BE~—

* NAT: Node Address Table

Inode for
directory

Directory data

File data l File data 4]

File data S File data { egme S Tahia |r:\?(;:je:1 Referenced via NAT lookup

I Direct p———

Node 1

Referenced|via NAT lookup

Used for cleaning dire Dire egme - Used for cleaning

Bl U one big log o | / e Multple logs /
] —l——1—IElFl

In a Log-Structured file system, updates at the bottom of the tree will be bubbled through the
whole tree (updating device addresses) until reached at the top and a new inode map location is
written - this is called recursive update problem (also known as Wandering Tree problem)

In contrast, F2FS uses node numbers for indexing and only immediate parent is updated with

further updates in-place in NAT (which is at a fixed location, Node Number — Device Address)
33

https://www.usenix.org/sites/default/files/conference/protected-files/fast15 slides lee.pdf
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Random writes in the NAT?

The idea (I think) is that it is a reasonable tradeoff to build a general
purpose FS with good performance in most of the cases. The
original Log-FS has many “*” for it to operate efficiently

@‘n LWN User: Password: Log inJ | SubscribeJ | RegisterJ
A ud‘
v
, o

.het

‘News from the source An foS te ardown
Content . . . .

Weekly Edition ...[f2fs] leaves a number of tasks to the FTL while focusing primarily on those
Archives tasks that it is well positioned to perform. So, for example, f2fs makes no effort
ifm“? to distribute writes evenly across the address space to provide wear-leveling.

erne

Security

...Some metadata, and occasionally even some regular data, is written via random
single-block writes. This would be anathema for a regular log-structured file
system, but f2fs chooses to avoid a lot of complexity by just doing small updates
when necessary and leaving the FTL to make those corner cases work.

An f2fs teardown, https://lwn.net/Articles/518988/, October 2012 34
https://www.pinterest.com/pin/440226932298031698/
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Multi-Headed stream logging

. . Multi-stream Sequential Writes
F2FS leverages device parallelism by ﬂ - | - ’I
opening multiple write segment streams : Siect“’ln l Slect“’ln l Tect“’lf‘ : ?e““i“ l
Main Area
These streams are classified based on their 1 1 | 1 : :
hotness and separated in zones ¥ w v % % &
Hot/Warm/Cold Hot/Warm/Cold
Node segments Data segments
e Uses asimple classification (unlike SFS) —fype T Temp. | Objects
e Different types (tab|e) put in different Hot Direct node blocks for directories
| Node | Warm | Direct node blocks for regular files
Classes Cold Indirect node blocks

Hot Directory entry blocks
Warm | Data blocks made by users

Different zones are mapped to different s Dats Dlocks moved by sleaning

pa rallel units inside the flash Cold | Cold data blocks specified by users;
Multimedia file data

35



On ZNS devices it can get more interesting ...

5.3. msF2FS - Design of Multi-Streamed F2FS 63
File A | File B | File C File A File B File C Files — Stream maps
g 0D Eh Yo | 0 oo i

\

gl OG0 200 S o ] | ] B

Hot Data Warm Data Cold Data Hot Data Hot Data Hot Data Warm Data Cold Data

Stream 0 Stream 1 Stream 3 Stream 0 Stream 0
Block I/O Block l/O
A y A4 A\ A4 \ 4 A4 A4
ZNS f " X ZNS =
Device EEEEE i s Device EEEI EEI
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Victim selection and segment cleaning

Recall: Greedy and Cost-Benefit (CB) policies

e Greedy is simple, but perhaps not the most effective
e (B is more effective, but needs more homework

F2FS does two type of cleaning

e Foreground: when the free segments drop below a threshold, uses Greedy
e Background: routine, takes its time with a CB policy with hotness

The rest of the trick is the same, move the data from the victim segment to the buffer

cache, and mark them dirty. They will be written down to the device in the due time. Not to
erase the old blocks until the checkpoint-ing is done.

Also: F2FS dynamically switches between threading and cleaning for log management.



F2FS performance

F2FS ——

Normalized TPS

N\

EXT4 m  BTRFS <=5 NILFS2 =~

N

I

Insert

Update

Delete

Thesis topic: these
numbers ought to be

updated for the fastest
flash we have

SQLite workload on 3 different file systems, F2FS outperforms them all
(more detailed performance evaluation in the paper)
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F2FS recap

Key choices in the design of F2FS

1. Flash-friendly data layouts : align fs GC unit (segments) with FTL gc unit

2. NAT updates to restrain writes update propagations
a. Accepts random writes for the FS metadata regions

3. Multi-headed logging for parallelism
4, Adaptive logging (threading vs. cleaning) and GC policies (foreground and

background)

It is highly influential work, and one of the few production quality code that we
can test and benchmark

39



So far

You have seen the original Log-Structured File System design (Sprite FS)
e Design originally for disks, but fits perfectly with NAND flash too :)
e Typically “GC" is the Achilles Heel of any log-structured file system

SSD File system (SFS) that explores FS-assisted GC policies, but mostly kept
the original Log-Structured layout
e File system maintains statistics actively for hotness on file blocks

F2FS, flash-friendly layouts with with multi-headed logging capabilities

All these file system assumed a conventional SSDs, can we think of something
new to do here?
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Thinking outside the (flash) box

All conventional file systems, do these three steps:

1. Determine a location (the on-device address) where to write data
2. Write data
3. Keep track of the location in the file system metadata

We will talk two unique file system designs (there are more in literature):

e Direct File System for virtualized Flash (DFS) (2009)
e Nameless Writes (2012)
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DFS: Direct File System (2010)

DFS: A File System for Virtualized Flash Storage

William K. Josephson

wkj@CS.Princeton. EDU

Lars A. Bongo

larsab@Princeton. EDU

Kai Li

David Flynn

dflynn@Fusioni0O. COM

1i@CS. Princeton.EDU

Abstract

This paper presents the design, implementation and evalua-
tion of Direct File System (DFS) for virtualized flash storage.
Instead of using traditional layers of abstraction, our layers of
abstraction are designed for directly accessing flash memory de-
vices. DFS has two main novel features. First, it lays out its
files directly in a very large virtual storage address space pro-
vided by FusionlO's virtual flash storage layer. Second, it lever-
ages the virtual flash storage layer to perform block allocations
and atomic updates. As a result, DES performs better and it is
much simpler than a traditional Unix file system with similar
functionalities. Our microbenchmark results show that DES can
deliver 94,000 VO operations per second (IOPS) for direct reads
and 71,000 IOPS for direct writes with the virtualized flash stor-
age layer on FusionlO's ioDrive. For direct access performance,
DFS is consistently better than ext3 on the same platform, some-
times by 20%. For buffered access performance, DFS is also
consistently better than ext3, and sometimes by over 149%. Our
application benchmarks show that DFS outperforms ext3 by 7%
to 250% while requiring less CPU power.

timized for magnetic disk drives. Since flash memory is
substantially different from magnetic disks, the rationale
of our work is to study how to design new abstraction
layers including a file system to exploit the potential of
NAND fiash memory.

This paper presents the design, implementation, and
evaluation of the Direct File System (DFS} and describes
the virtualized flash memeory abstraction layer it uses for
FusionlO’s ioDrive hardware. The virtualized storage ab-
straction layer provides a very large, virtualized block ad-
dressed space. which can greatly simplify the design of a
file system while providing backward compatibility with
the traditional block storage interface. Instead of push-
ing the flash translation layer into disk controllers, this
layer combines virtualization with intelligent translation
and allocation strategies for hiding bulk erasure latencies
and performing wear leveling.

File —

File System

N
Flash Logical Address

FTL

N
Flash Physical Address
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DFS: Context

The year is 2010, flash is this new cool technology that is going to solve all our
problems (allegedly)

Host-based FTL designs are being explored

FS exploration is happening, but not much is understood yet

SSD device performance is increasing

PCle-attached is the way to attach flash storage (NVMe is not there yet)

This work is from Fusion-10, the company that put flash on PCle and run the FTL in
the device driver on the host-CPU (no-embedded, device-side FTL)

e Attaching to the PCle bus brings the device within CPU memory management

e Delivered 100K IOPS random read performance (!)
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Virtualize Flash Storage: Key ideas

Instead of restrictive “N” block interface (where N is the capacity, like 1TiB) to a flash
SSD, present a large 64-bit block address space (like the virtual memory)

Combine the two re-directions:

1. FS-level: from file to logical flash page
2. FTL-level: from logical flash page to physical location

File systems is just responsible for choosing the most easy/lightweight layout for file
management

Virtualized FTL: wear-leveling, remapping, and reliability

64-bit page addressing for 512 bytes pages in Fusion-10 flash, 273 bytes space
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How does it look?

File System

Logical block
(physical size)

Database

Ops: Read, Write, ...

Traditional Block Storage Layer

Traditional || Traditional
DFS File System Database oo
Virtual block . "
(64-bit block address) Ops: Read, Write, Deallocate, ...

Read
SectorI Write

FTL (Remapping)

ock |erase lPa_ge %Page
write read

h 4

Block
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NAND Flash Memory

Solid State Disk
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SectorI Write
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(Remapping, Wear-Leveling, Reliability)
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A 4

Block
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NAND Flash Memory

Solid State Disk

Block TPage Block T Page
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Controller Controller
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Building a simplified file system

Virtualized address space from flash FTL, 64 bits address identifying the 512 byte block

X 273 bytes space (254 x 2° bytes, 512 byte blocks)
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Building a simplified file system .,z uiocation chuns

/:7/

273 bytes space (254 x 2° bytes, 512 byte blocks)

How many 2TB chunks there can be? 273/24" = 232 (hence, a 32 bit chunk addressing is enough)

The 64 bit storage space is divided as : 232 chunks of size 232 x 512 bytes (2TiB).

Files/directories are divided into large and small. Large files gets full 2TiB (virtual) chunk, multiple smalls files are
packed together in a single 2TiB chunk — how to do this classification? User-defined threshold
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Building a Simplified File System

N
Superblock e Occupied Small file
( inode®
%noje% | ,/Large File D-Lar%e Small dir
Simple inode (2TB) irectory
Array < Lol (2TB)
offsets
L inodeK |

273 bytes space (254 x 2° bytes, 512 byte blocks)

Inodes are 512 bytes, hence there are 2TB / 512 bytes number of inodes — 32 bits address

Inode location look-up is then trivial : inode_number — to location translation (array offsets)
Inode entries contain the virtual address of the allocated 2TB block, file type, creation time, access,
etc.



File Offset Translation

Let's say | want to read a file at an offset (in the units of 512 bytes)

<file descriptor, offset>
32 bits

DFS file to inode mappings (0S)

<inode num, offset>

Indexing in the inode array

<2TB block address, offset>
32 bits + 32 bits = 64

32-bits offset

W 232 of them
/|

9-bits offset

512 bytes

Goes to the FTL

for 170
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Does it help with performance?

Random Write IOPSx1000
B raw

% m dfs Device peak

Ml X Wall Time

70- Application Ext3 | DES | Speedup
o0 Quick Sort 1268 | 822 1.54
i N-Gram (Zipf) | 4718 | 1912 2.47
0 KNNImpute 303 248 1.22
o VM Update 685 | 640 1.07
0 TPC-H 5059 | 4154 1.29

1T 2T 3T 4T 8T 16T 32T 64T

Yes, DFS deliver superior performance in microbenchmarks and in real world workloads
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In Summary: DFS (2010)

Module DFES Ext3
Headers 392 1583
Kernel Interface (Superblock, erc.) | 1625 2973
Logging 0 7128
Block Allocator 0 1909
[-nodes 250 6544
Files 286 283
Directories 561 670
ACLs, Extended Attrs. N/A 2420
Resizing N/A 1085
Miscellaneous 175 113
Total 3289 | 24708

Very simple and intuitive implementation
Complexity is avoided in

e inode management

e Allocation and logging

DFS has issues, the recovery logic needs
support for atomic hardware logging

e Expensive device

e (Consumes CPU cycles on the host

But overall, it is a pretty cool work that shows how to revise old abstractions
and re-think ideas in presence of new technologies like NAND flash
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Another cool project: FlashMap (2015)

Application

! page fault

Virtual Memory System

y

File System

a

Flash Translation Layer
Flash

/~ Virtual Qddress I

Page Table &
Memory Manager

|

Physical Address/File Offset
A\ JHE 29

7 File OIfset N\
File Index

/

\Logncal Block Address )

Logical Block Address
V

El

¥
Physical Block Address

Jian Huang, Anirudh Badam, Moinuddin K. Qureshi, and Karsten Schwan. 2015. Unified address translation for memory-mapped SSDs

5

N

3 address translations
+ 2 boundary checks
+ 2 permission checks

= Latency: 15 - 20 microseconds

+ Increased Metadata Overhead

with FlashMap. In Proceedings of the 42nd Annual International Symposium on Computer Architecture (ISCA '15).

https://doi.org/10.1145/2749469.2750420

52


https://doi.org/10.1145/2749469.2750420

Nameless Writes (2012)

De-indirection for Flash-based SSDs with Nameless Writes

Yiying Zhang. Leo Prasath Arulraj. Andrea C. Arpaci-Dusseau. Remzi H. Arpaci-Dusseau
Computer Sciences Department, University of Wisconsin-Madison

Abstract

We present Nameless Writes. a new device interface that
removes the need for indirection in modern solid-state
storage devices (SSDs). Nameless writes allow the de-
vice to choose the location of a write: only then is the
client informed of the name (i.e.. address) where the block
now resides. Doing so allows the device to control block-
allocation decisions. thus enabling it to execute critical
tasks such as garbage collection and wear leveling, while
removing the need for large and costly indirection tables.
We demonstrate the effectiveness of nameless writes by
porting the Linux ext3 file system to use an emulated
nameless-writing device and show that doing so both re-
duces space and time overheads, thus making for simpler.
less costly, and higher-performance SSD-based storage.

1 Introduction

Indirection is a core technique in computer systems [28].
Whether in the mapping of file names to blocks, or a vir-
tual address space to an underlying physical one. system

Unfortunately, the indirection such as found in many
FTLs comes at a high price. which manifests as perfor-
mance costs, space overheads. or both. If the FTL can
flexibly map each virtual page in its address space (as-
suming a typical page size of 2 KB). an incredibly large
indirection table is required. For example. a 1-TB SSD
would need 2 GB of table space simply to keep one 32-bit
pointer per 2-KB page of the device. Clearly. a completely
flexible mapping is too costly: putting vast quantities of
memory (usually SRAM) into an SSD is prohibitive.

Because of this high cost. most SSDs do not offer a
fully flexible per-page mapping. A simple approach pro-
vides only a pointer per block of the SSD (a block typ-
ically contains 64 or 128 2-KB pages). which reduces
overheads by the ratio of block size to page size. The
1-TB drive would now only need 32 MB of table space,
which is more reasonable. However. as clearly articulated
by Gupta et al. [16]. block-level mappings have high per-
formance costs due to excessive garbage collection.

As a result. the majority of FTLs today are built us-
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Key Challenge: Excessive Indirection

Redirection adds layer between two abstractions and an API

Very powerful idea in computer science File systems
Virtual Memory management (hides physical DRAM addresses) FTL
Virtualization (hides systems resources CPU, memory, devices)

(here) FTL (hides low-level flash complexity)

NAND physical add.

(also) DFS's flash virtualization is an example of indirection

However, they come at a performance or complexity cost. The question here is given
that what we know about FTL and the device internals, what can we do?
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The Storage Device APl and Indirection

How does a storage device APl looks like? Where is the indirection?

e write(sector/page/address, data, length)
e read(sector/page/address, data, length)
e trim(sector/page/address, length) // only useful for SSDs

write read

indirection
API {W TAT
Virtual N L
/
— \

Physical
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The Storage Device APl and Indirection

How does a storage device APl looks like? Where is the indirection?

e write(sector/page/address,| data, length)
e read(sector/page/address, |data, length)
e trim(sector/page/address, length) // only useful for SSDs

The problem comes from the fact that a file system (or any other storage
service) tells the device “where” to write “what”

e The “name” or the identifier of the location is already given in the call

These are “named” writes. What if we don't tell the device where to write,
only what to write, hence, the nameless writes? 56



Nameless Writes Idea

Device physical addresses are exposed to the

application like file system write(data, length)
Physical location

Data is written directly directly on physical blocks \

Device is free to choose the best location where to
write data and notify the application

Flash device

Maximum flexibility to the device

Challenges (of course, why else we would do it? think of running a Log-Structured File system on it...
e Looking up stuff : everytime FS writes something we get a new address?

e Recursive update problem : inode map changes propagation ?
e GC, wear-leveling, copying -- what if a block is migrated inside the flash device?
e Anything else? 57



Segmented Address Space

. . Virtual Read Physical Read
Split the address space into two areas: Virtual Writes Nameless Writes
e Virtually addressed H H
° PhyS|Ca”y addressed Virtual Address Space Physical Address Space
Vo |Vvi|V2]|V3 PO|P1|P2|P3|P4|P5|P6|P7|P8|P9
M M 11 n ! '
Virtually addressed is “page-mapped e ||
in the FTL for the best performance R IZEX N SUIE NN S -
e Small area, hence, low memory e

Po|Pi|P2[P3|Pa|P5|Pe|P7|P8|P9

requirements for the FTL

This way virtually mapped areas are always addressable in a known location
e Super block, NAT tables, inode maps can be placed here
e Recursive updates terminate here



Nameless API so far

Physical API

e uint64_t physical write(data, length) — {paddresses, status}
e uint64_t physcial read(paddress, length) — {data, status}

Virtual API

e virtual write (vaddress, data, length) — {status}
e virtual read (vaddress, data, length) — {status}

So what happens if a physical block is moved, like during GC and wear-leveling? How
does the file system know when a block is moved underneath it inside a device?
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Callbacks and Metadata

To support free moving of data in physical blocks, Nameless API also
introduced callback to file systems (or to any upper layer API)

e callback — {old paddress, new paddress}

However, now when a file system get an address “@xdeadbeef” is changed,
how does it know which file/directory is this belong to?

e Sure, it has this information, but needs the full FS scan (not feasible)

e Idea: put a metadata pointer with all read/writes

o Embed any useful pointers in these metadata, e.g., inode + version
o Metadata stored in small OOB flash areas next to pages and written atomically
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Nameless Device and API

Physical API

physical write(data, length, mdata) — {paddr, status}

e physcial read(paddr, length, mdata) — {data, status}
physcial overwrite(old paddr(es), data, length, mdata} —
{new paddr(es), status}
callback — {old paddr(es), new paddr(es), mdata}

e free/trim(p/vaddr, length, mdata} — {status}

Virtual API (not that interesting)

e virtual write (vaddress, data, length) — {status}
e virtual read (vaddress, data, length) — {status}

61



Evaluation: Nameless

Image Size | Page Hybrid | Nameless
328 MB 328 KB 38 KB 2.7KB
2GB 2 MB 235 KB 12 KB
10 GB 10 MB 1.1 MB 31 KB
100 GB 100 MB 11 MB 251 KB
400 GB 400 MB | 46 MB 1 MB
1 TB 1 GB 118 MB 22MB

Throughput (KIOPS)

0 i
M Page M Nameless

N
o

-
o

Sequential

—m%

Random

Nameless device performance closely to a page-mapped FTL without
requiring high memory to maintain GBs of FTL mapping tables
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Further ideas in the literature

1. Application-Managed Flash (USENIX FAST 2016)

a. Completely expose flash chips to file systems and no in-place updates
b. Breakdown recursive updated data structures into small blocks, and build an in-memory
data structure at the time of mounting to capture updates

2. Para File system (USENIX 2016)

a. Also exposes a very simple FTL to the file system exposing all device geometry
b. Considering page allocation and striping to extract maximum performance
c. Coordinated I/0O scheduling between on-host GC threads and user writes

There is a large body of work out there regarding optimizing file systems for
NAND flash storage devices
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What we are not covering

Popular file system designs for raw-flash chips in embedded systems (FTL+FS):

JFFS (The Journalling Flash File System), UBIFS (Unsorted Block Image File System), Yaffs
(Yet Another Flash File System), NAFS (NAND flash memory Array File System), CFFS (Core Flash

File System), NAMU (NAnd flash Multimedia file system), MNFS (novel mobile multimedia file
system), ...

Typically they are build on similar ideas and concepts, but they

Assume some sort of NOR byte-addressable location

Focus on wear-leveling for a single class of applications (not server-class diverse
workloads)

e Are not scalable to TBs of flash chips capacities
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For further reading see...

arXiv:2307.11866v1 [cs.C

A Survey on the Integration of NAND Flash Storage
in the Design of File Systems and the Host Storage Software Stack
Survey done: July 2022

Nick Tehrany Krijn Dockemeijer Animesh Trivedi
Delft University of v Vrije U Vrije L
n.a.tehrany@vu.nl kdoekemeijer@vunl atrivedi@vinl

Abstract

‘With the ever-increasing amount of data generate in the world,
estimated to reach over 200 Zettabytes by 2025, pressure on
efficient data storage systems is intensifying. The shift from
HDD to flash-based SSD provides one of the most funda-
mental shifts in storage technology. increasing performance
capabilities significantly. However, flash storage comes with
dierent charactristics than prior HDD storage technology
Therefore, storage software was unsuitable for ing the
capabilities of flash storage. As a result, a plethora of storage
applications have been design o better integrate with flash
storage and align with flash characteristics.

In this literature stdy we evaluate the effect the introduc-
tion of flash storage has had on the design of file systems,
which providing one of the most essential mechanisms for
mana

ing persistent storage. We analyze the mechanisms for

n rage. managing overheads of
introduced design requirements. and leverage the capabilities.
of flash storage. Numerous methods have been adopted in file
systems, however prominently revolve around similar design
decisions, adhering to the flash hardware constrains, and lim-
iting software intervention. Future design of storage software
remains prominent with the constant growth in flash-based
storage devices and interfaces, providing an increasing poss
billty to enhance flash integration in the host storage software
stack.

1 Introduction

With the increasing amount of data, estimated to reach 200
Zettabytes by the year 2025 [182), efficient storage systems
are becoming imperative. A large contribution factor 1o in-
creased data generation is the gain in popularity for big
data [9.80,124] and cloud services [6.215]. While there exist
a plethora of different storage technologies, the most preva-
lent type is Hand Disk Drive (HDD) [7.48]. which are now
lurgely being replaced by Solid State Drive (SSD) [45]. HDD
s one of the cheapest forms of storage, however is limited

in performance due o requiring on mechanical movement
10 access data on the disk. This results in high latency for
random access patterns [53, 102] and additionally increases
power demand [29,73]. While SSD is more expensive than
HDD, it is becoming more affordable [180] and provides in-
creased performance over HDD [119], resulting in a growing
adoption for enterprise businesses [46, 146].

One of the most fundamental mechanisms of storing and
organizing data on HDD, SSD. and other storage technologies
is through the use of file systems, enabling the structural orga-
nization of data on persistent storage media. Building efficient
and performant file systems for the evolving storage media
technologies and progressing with future demands of data
storage s of paramount importance. With HDD having been

i file s

appl

istics of these devic s
patterns o sequential accesses [25, 190], in an effort to min-
imize mechanical movement on the disk and thus optimize
their performance.

‘The most widely adopted type of SSD is based on flash
storage, having different characteristics than traditional HDD.
Performance of flash storage achieves several GB/s, with mil-
lions of /O Operations per Second (I0PS) [91,220], and
access latency as low as single digit p-second latenc:
ever, flash storage has its own characteristics different from
HDD. In particular, flash storage does not support in-place
updates, requiring data 1o be erased at a larger unit in order to
be written again. Additionally. the cost of erase operations is
substantially higher than read and write operations [91,235].
In order t0 hide these constraints from host systems. flash
SSD employs firmware, called the Flash Translation Layer
(FTL). that exposes a sector-addressable inter
lows SSD 10 be addressed in the same way as conventional
HDD, requiring no changes in host software for accessing the
different storage technologies.

While SSD and HDD uilize the same interfaces to be ad-
dressed, in order to exploit the increased performance benefits
of flash storage, software must integrate with the characteris-
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What you should know from this lecture

1. How did SSD influence the design of file systems

2. What is a Log-Structured File System and why it is the most popular-way
to build flash-based file systems

3. What are they key design challenges when building a flash-based file

system, choices for
a. Layouts, GC policies, segmentation management
b. Ideas presented with Sprite FS, SSD FS, and F2FS

4. New developments with the co-development of FTL and FS semantics
a. DFS, and Nameless writes

Next week: Flash-based Key-Value Stores
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