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Abstract
Linux storage stack offers a variety of storage I/O stacks
and APIs such as POSIX I/O, asynchronous I/O (libaio),
high-performance asynchronous I/O (emerging io_uring)
or SPDK, the last of which completely bypasses the kernel.
Despite their availability, there has not been a systematic
study of their performance and overheads. In order to aid
our understanding, in this work we systematically charac-
terize performance, scalability and microarchitectural prop-
erties of popular Linux I/O APIs on high-performance stor-
age hardware (Intel Optane SSDs). Our characterization re-
veals that: (1) at low I/O loads, all APIs perform competi-
tively with each other, with polling helping the performance
by 1.7×, but consuming 2.3× CPU instructions; (2) at high-
loads and scale, io_uring is more than an order of mag-
nitude slower than SPDK; (3) at high-loads and scale, the
benchmarking tool (fio) itself becomes a bottleneck; (4) state-
of-practice Linux block I/O schedulers (BFQ, mq-deadline,
and Kyber) introduce significant (up to 50%) overheads, and
their use of global locks hinder their scalability. All artifacts
from this work are available at https://github.com/atlarge-
research/Performance-Characterization-Storage-Stacks.

CCS Concepts: • Software and its engineering → Sec-
ondary storage; Operating systems.
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1 Introduction
Modern storage devices such as Intel Optane SSDs can de-
liver millions of IOPS (I/O operations per second) with single-
digit microseconds (`𝑠𝑒𝑐𝑠) I/O access latencies [7, 17]. Mean-
while, the CPU performance has remained relatively sta-
ble as Moore’s Law driven performance gains stall [29].
Consequently, the stalled CPU performance with high-
performance storage hardware has exposed many previously
hidden software overheads in the storage stack implemen-
tations, thus leading to a series of efforts to redesign and
optimize the storage stack focusing on lock contentions,
polling, copy elimination, new interfaces, scheduling, context
switches, asynchronous I/O paths, interrupt and system call
eliminations [3, 18, 20, 25, 30, 36, 37, 39, 40, 45, 56, 59, 66, 68].

Beyond these optimizations, there have been many efforts
to improve the user-kernel and user-storage APIs and ab-
stractions. Linux supports two popular and widely used APIs
called (synchronous) POSIX file I/O calls [12, 13] and an asyn-
chronous API called libaio [3]. Both of these APIs interact via
system calls (syscalls) with the Linux kernel which can have
high overheads [22, 38, 55]. More recently, Linux develop-
ers have introduced a new high-performance I/O API called
io_uring [8]. It takes many established ideas from the high-
performance networking domain (shared-memory queues,
asynchronous I/O, polling, shared I/O contexts) and applies
them to storage in a unified manner [61, 62]. These advance-
ments are now merged in the Linux storage stack (since
v5.1 kernel version), and have shown to deliver high per-
formance and CPU efficiency [22]. All of these APIs (POSIX,
libaio, io_uring) work within the kernel.
The Linux kernel with its generic code execution, func-

tionalities, and features can also introduce significant over-
heads [51], thus leading to the design of kernel-bypassing
userspace storage stacks [24, 34, 69, 74]. The Storage Perfor-
mance Development Kit (SPDK) is one of the most popular
and widely used user space I/O libraries, which can deliver
up to 10 million IOPS using a single CPU core [2]. However,
user space I/O libraries lack many kernel-supported features
such as fine-grained isolation, access control, file systems,
multi tenancy, and QoS support [48, 64].
In summary, over the past decade, the in-kernel and

userspace I/O stacks have undergone a significant devel-
opment phase. Despite sharing a common functional goal
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- access to data from storage devices - these I/O stack imple-
mentations prioritize different goals (performance, stability,
security, efficiency). As a result, there is a lack of understand-
ing about the performance, efficiency, and scalability of these
stacks, specifically on modern high-performance storage de-
vices such as Intel Optane SSDs. Closest to our work is the
recently published work by Didona et al. that studies the
performance and scalability of libaio, io_uring, and SPDK
on flash SSDs [22]. We build on their findings and further
report on performance breakdowns (microarchitectural, and
instructions profiles), with I/O scheduler-related overheads.

In this paper, we take a step back and systematically study
these storage stacks on modern high-performance storage
devices. Our test bed consists of Intel Xeon CPUs with seven
(7) Intel Optane devices in a single machine with the peak
performance of 4.2 million IOPS (specification: 600 kIOPS ×
7 devices) (Table 1). We start our investigation by studying
the performance (expressed as IOPS) of POSIX I/O, libaio,
io_uring, and SPDK at a low load with a single outstanding
I/O request on a single Optane device and a single CPU core,
and quantify in detail their microarchitectural properties and
CPU instructions breakdown. We then quantify their perfor-
mance as we increase the number of outstanding requests
(expressed as queue depth), and add CPU cores and NVMe
devices (from 1 to 7). Lastly, we measure the impact of three
state-of-the-practice block I/O schedulers (BFQ, mq-deadline,
Kyber) on the performance of these stacks [10]. The primary
contribution of this work is about performance and scala-
bility characterization of state-of-the-practice Linux storage
APIs. Our key findings demonstrate that:

1. At low I/O loads, we report 81.1-94.6 kIOPS for non-polling
APIs (POSIX, libaio, and io_uring). Polling increases
the performance to 108-138.9 kIOPS (1.7× increase) with
io_uring and SPDK, with a proportional increase in the
CPU instructions required per I/O operation (up to 2.3×).
(§3.1).

2. At high-loads (128 queue depth, 7 devices), io_uring is
more than an order of magnitude inefficient than SPDK.
SPDK can saturate our hardware with 5 cores (using fio)
or just a single core when using SPDK’s light-weight perf
benchmark. In contrast, the best performing io_uring
configuration needs 13 cores. (§3.2).

3. At high-loads, the benchmarking tool (fio) itself becomes
a bottleneck. In our setup, SPDK with fio takes 5 cores to
deliver 4.2 Million IOPS. SPDK with its own perf bench-
mark [15] takes only one, thus showing 5× overheads with
fio. (§3.2).

4. State-of-practice Linux I/O schedulers (BFQ, mq-deadline,
and Kyber) introduce significant (up to 50%) overheads,
and their use of global locks hinder their scalability. (§3.3).

To facilitate reproduction, our benchmarking code is avail-
able at https://github.com/atlarge-research/Performance-
Characterization-Storage-Stacks.
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Figure 1. A high-level overview of the Linux storage stack.

2 Background
Before we start with benchmarking, we briefly recap the key
concepts and details from the Linux storage stack (Figure 1).

2.1 Linux I/O Stack
Applications submit I/O requests to the I/O interface (step
1), such as POSIX read/write [12, 13] (referred to as psync),
libaio [3], io_uring [8]. The I/O interface constructs struct
kiocb and submits it to a file system via the VFS (step 2). The
file system then resolves the relevant block address contain-
ing data, constructs a struct bio request and submits it to
the block layer through submit_bio() (step 3). The Linux
block layer converts struct bio to struct request (step
4) and puts it in a per-core software queue (step 5). These
requests are then processed by a block I/O scheduler and
put in a hardware dispatch queue (step 6-7). Requests in the
hardware dispatch queue are processed by the NVMe driver
by nvme_queue_rq() (step 8). The NVMe driver constructs
an NVMe command according to the requests (step 9), and
writes them to the submission queue (SQ) (step 10) to be
processed by the device (step 11). After the command is pro-
cessed by the device, the device writes the request to the
completion queue (CQ) and generates an interrupt (step 12).
The completion is processed by nvme_process_cq and then
blk_mq_end_requeset() and bio_end_io() are called to
finalize the request in bio layer (step 14). At last, the appli-
cation is notified of the completion results (step 15).

2.2 Emerging High-Performance io_uring API
io_uring maintains shared-memory, lock-free submission
(SQ) and completion queues (CQ) between the kernel and
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Table 1. Specification of the server machine.

CPU Dual socket (2×) Intel(R) Xeon(R) Silver 4210R
CPU 10 cores @ 2.40GHz, Hyper-threading dis-
abled, Turbo disabled

Memory 256GB, DDR4
Storage 7× Intel Corporation Optane SSD 900P Se-

ries (512 bytes LBA, preconditioned 10×, spec:
550 KIOPS with 4KiB random read), all 7 NVMe
SSDs connected to the CPU NUMA domain 1

Software Ubuntu 22 with Linux kernel v5.15.79, built
with default config, fio-3.32 (commit db7fc8d),
SPDK 22.09 (commit aed4ece93)

application. The application writes to the SQ to submit I/O re-
quest and gets completion notficiation via the CQ. By default
(identified as iou), when an application submits new requests
to the SQ, it notifies the kernel by io_uring_enter syscall.
The same syscall is used to retrieve completion events from
the CQ. io_uring can use polling to eliminate syscalls and
interrupts. The application can poll on the CQ, thus actively
reaping completions without interrupts. If there are comple-
tions available on the CQ, these can be processed without
a syscall, otherwise a syscall is issued to poll in the kernel
for I/O completion. This mode is referred to as completion
polling or iou-c (using hipri flag). To remove a syscall dur-
ing SQ submission, the application can start a kernel thread
to poll for I/O requests on the SQ on behalf of the application
(using sqthread_poll), thus eliminating a need for a syscall.
This mode is referred to as submission polling (iou-s, with
the hipri flag).

2.3 Kernel-bypassing Userspace SPDK API
Storage Performance Development Kit (SPDK) is a user space
I/O library that provides zero-copy, high-performance, and
efficient direct access to NVMe SSDs from the userspace
leveraging a poll-based NVMe driver [69]. SPDK initializes
and accesses NVMe I/O queues directly in the userspace,
thus completely skipping the kernel during I/O operations.
Currently, SPDK is considered the state-of-the-art I/O stack
that can deliver the best performance to workloads and is
used extensively [31, 38, 41, 67, 71].

3 Experiments
We now start with our study of the performance and effi-
ciency of the Linux storage stack with its I/O APIs: POSIX
I/O (psync), libaio (aio), io_uring (with 3 configurations: de-
fault as iou, completion polling iou-c, and submission with
completion polling as iou-s), and SPDK. The purpose of our
study is to answer:
(Q1) What is the performance gap among different I/O APIs

and their configurations?
(Q2) Why is there a performance gap, and how do these APIs

use the CPU time, cycle, and instructions?
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Figure 2. Random read 4KiB throughput (IOPS).

(Q3) How does the performance gap scale with the number of
CPU cores and storage devices?

(Q4) What is the impact of I/O schedulers on the performance
of these I/O APIs?

We cover Q1-3 in §3.1 and §3.2, whereas §3.3 answers Q4.
To prepare for the benchmarking, we follow the best prac-

tices from [65] for Optane SSDs. All devices are formatted
with the LBA size of 512 bytes, and are written completely 10
times. For our experiments we use the request size of 4KiB
which shows the same performance as 512B requests. We
choose fio as the workload generator [6]. All benchmarking
processes are pinned to the CPU NUMA node 1 except when
we use more than 10 cores (uses CPU/NUMA node 0). We run
fio workloads for 140 seconds (2 minutes + 20 seconds warm
up time). We use perf record to record microarchitectural
event metrics from the CPU counters, and report an average
of 10 times over 5 seconds runs while the fio workloads run.
Table 1 presents the benchmarking environment.

3.1 The Efficiency of I/O Stacks
We start our benchmarking with a single NVMe Optane de-
vice with a single CPU core, except for iou-s that uses 2 cores.
The reason for using 2 cores is the performance collapse due
to the contention of fio and kernel threads polling on a single
physical CPU core [22]. We collectively refer to iou-c, iou-s,
and SPDK as polling libraries, and psync, libaio, and iou to
as non-polling libraries.

3.1.1 Performance. We report on the maximum IOPS
completed with 4KiB random reads with a single outstanding
request (i.e., queue depth QD=1). Figure 2 shows our results
with IOPS (y-axis, higher is better) and libraries on the x-axis.
There are a few observations here. First, iou and aio have
the worst performance compared with other libraries, 17% to
72% lower IOPS than psync and SPDK, respectively. psync,
the oldest among the six configurations, has 17% higher IOPS
compared with aio and iou. All non-polling libraries perform
relatively close by 81.3-94.6 KIOPS. The use of polling in-
creases the performance significantly. iou-s and iou-c (both
polling based) have 34% and 39% higher IOPS than the non-
polling iou configuration. SPDK has the highest IOPS, 71.3%
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Figure 3. Comparison on micro-architecture efficiency of 6 different I/O libraries using a single thread and queue depth = 1.

higher than iou. In general, I/O APIs with polling improve
the performance up to a margin of 1.7× (81.3 vs 138.9 KIOPS).

3.1.2 Microarchitectural characterization. As a next
step, we characterize their CPU profiles focusing specifi-
cally on: (i) instructions required to complete a 4KiB random
read operation (capturing the software overhead), lower is
better; (ii) code execution efficiency by calculating instruc-
tion retired per CPU cycle (IPC), higher is better; and (iii)
data fetching efficiency of the code path by calculating the
cache miss rates, lower is better. We calculate these quanti-
ties for two configurations, system-wide (-a flag with perf)
and process-specific. The process-specific configuration only
reports events that are attributed to the fio process, whereas
the system-wide configuration captures all events happen-
ing in the system. Since fio is the only workload running on
the idle server, all events are directly (process-specific) or
indirectly (system-wide) attributed to fio. Nonetheless, we
do report them separately and explain the gap between them
when they diverge.

We show our results in figure 3. There are three primary
observations here. First, non-polling libraries (psync, aio, and
iou) all have equal or better instructions required per I/O
operation than the polling libraries (iou-c, iou-s, and SPDK)
as shown in figure 3a. This result is expected as polling li-
braries are constantly utilizing the CPU core to 100%, thus in-
creasing the number of instructions executed. Consequently,
for similar performance (IOPS), they show higher (worse)
instructions/IOPS. iou-s takes 2.3× more instructions to pro-
cess each I/O request than iou-s and spdk-fio because it runs
on the two cores. Note that there is 2× difference between
system-wide and process-specific instruction/IOPS for non-
polling libraries. It is because when the CPU utilization is
not 100%, the swapper process takes up half the instructions
in a system-wide profile. The swapper process (PID 0) is a
special process in the Linux kernel that is run by a CPU
when there is no other processes to run (i.e., the CPU is idle).
Hence, at low-load (QD=1), polling-based libraries need 5-
12× more instructions to complete an I/O request than their
non-polling counterparts.
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Second, with a streamlined execution of instructions for
polling (an optimized code path), the polling libraries show
better IPC than the non-polling libraries (figure 3b). A higher
IPC implies the instructions are better structured so that they
are executedwith each CPU clock cycle without being stalled,
hence, showing an efficient code path. The three non-polling
libraries have lower IPC, about a one-third (1/3𝑟𝑑 ) compared
with the polling-based libraries on average. However, the
higher IPC of the polling-based libraries does not mean they
are more efficient as the CPU spends many instructions on
polling. A polling code is typically well structured and opti-
mized, leading to a higher IPC for the polling-based libraries.
IPC becomes comparable when the workload increases (§3.2).
Lastly, figure 3c presents the cache miss rates (lower is

better) that represent the data fetching efficiency of the code
path. Even though psync has 1.6-2.5× higher cachemiss rates,
it still delivers higher IOPS than its non-polling counterparts.
SPDK has the highest cache miss rate, 14.1× higher than the
lowest one, iou-s and 1.5× higher compared with the second
highest one, psync. With SPDK, all DMA operations are done
directly to user buffers, hence, all CPU initiated requests
result in a mandatory cache miss. We do not observe a direct
impact of such cache miss rates on the performance. We
hypothesize that this is due to the small memory footprint of
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Figure 5. Throughput and latency with queue depth ranging 1-128, and the instruction breakdown at the saturation point.

the data request sizes involved. However, in our experiments,
we notice that the process scheduler has a huge impact on
the cache miss rate. When the threads are not pinned in
a single node and the user and kernel threads of iou-s are
mapped to different nodes, the cache miss rate is higher than
95% (not shown).

3.1.3 Instruction breakdown. As the last step in our
analysis, we break down the different components where the
CPU has spent time by executing instructions. Figure 4 shows
our results in five distinct categories: (i) fio, the workload;
(ii) I/O library specific code in the user or kernel space; (iii)
block layer specific routines; (iv) NVMe device driver; and
lastly (v) kernel-specific symbols (scheduling, memory allo-
cation, etc.). The rest is marked misc. In an ideal setting, all
CPU instructions (100%) are to be consumed by the fio, thus
showing a zero-cost ideal I/O API, however, such a system is
unrealistic. psync spends a significant amount of instructions
(66%) in the block layer, whereas its own psync-specific code
only requires 3.8%. In contrast, libaio spends nearly 40% of
its instruction budget on its own implementation [21]. The
default iou is somewhere in between, however, as polling
is introduced, iou-c spends the majority of its instructions
with completion polling (triggered via io_do_iopoll in the
kernel, attributed to I/O lib). iou-s evenly splits between fio-
based polling for completion (fio_ioring_getevents) and
block-layer kernel thread polling as expected. Lastly, SPDK
spends 83% of its instructions on polling as attributed to the
NVMe driver (a part of the SPDK) with 17% instructions left
for the fio benchmark.

3.1.4 Summary. At low I/O loads, non-polling and polling
APIs perform competitively with each other, respectively.
We report 81.1-94.6 KIOPS for non-polling APIs. Polling in-
creases the performance to 108-138.9 KIOPS (1.7× increase)
with io_uring and SPDK. However, the polling-based APIs
take more CPU instructions per IOPS (up to 2.3×). The CPU
instruction breakdown shows non-polling APIs spend a sig-
nificant fraction of their instruction budget on non-fio code.
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3.2 Scaling: I/O Depths and NVMe Devices
In the previous section, none of the configurations reached
the single Optane hardware limit because the queue depth
was the bottleneck (QD=1). In this subsection, we study the
scalability properties (Q3) of these I/O APIs as we scale the
load on the system (QD > 1) and increase the number of
devices from 1 to 7. Due to its synchronous nature, we drop
psync from the consideration here.

3.2.1 Performance. Figures 5a and 5b show our results
with a single CPU core. The x-axis shows IOPS, and the y-axis
the corresponding latency as we increase the queue depth by
issuing 1-to-128 requests. A flat horizontal line is preferred.
We observe that Optane devices can deliver more perfor-
mance (600 KIOPS) than the peak throughput specification
from the Intel spec sheet (550 KIOPS). With 7 devices, a sin-
gle CPU core with SPDK can deliver close to 1.1 million IOPS
(@7.4`secs). All lines in the graph form a J shape line. At
the start, throughput increases with a negligible increase in
latency, then it stops increasing, and the latency increases
dramatically as the CPU becomes saturated and it cannot
keep up with the load. We call this point the saturation point
(the heel of the J curve). aio, iou, iou-s, iou-c, and spdk-fio
reach the saturation point when QD = 8, 8, 32, 8, 8 with a
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Figure 7. Comparison on micro-architecture efficiency of 5 different I/O libraries at saturation point

single device, respectively. The same queue depth is needed
with 7 devices except for spdk-fio, which needs QD=16. In
comparison, the other I/O libraries only deliver 0.79× (474K
vs. 600K IOPS for one device) to 0.53× (549K vs. 1.1 million
IOPS, for 7 devices), a fraction of the SPDK’s performance.
To showcase the scalability of performance, we now add

more CPU cores at the peak performance with QD=128 with
7 Optane devices. Figure 6 shows our results. The y-axis
is the throughput in million of IOPS, and the x-axis shows
the number of cores. The figure shows that all I/O stacks
can reach the peak hardware performance, however, with
different CPU cores. The most efficient one among them
is SPDK which only takes 5 CPU cores to deliver the peak
4.2 million IOPS. In comparison, the best io_uring variant
(iou-c) takes 13 cores (2.6× inefficient).

At this configuration, we notice that the fio benchmarking
code itself becomes a bottleneck. To verify this hypothe-
sis, we use SPDK’s own benchmarking framework called
SPDK-perf [5, 16]. With this, SPDK is able to deliver the peak
performance of 4.2 million IOPS even with just a single core!
In this configuration, SPDK-perf is 13× more efficient than
iou-c with fio. From our initial analysis, SPDK-perf is able to
outperform fio because of its simple setup as it runs a set of
independent threads that only send NVMe requests and poll
them for completion. Notably, each thread resides on an inde-
pendent core and does not coordinate with the other threads
for job accounting and scheduling, runs minimal checks, and
allocates DMA buffers directly with a simple memory pool
without touching the data. SPDK-perf represents an unreal-
istic workload. However, it is useful in establishing the peak
performance bounds.

3.2.2 Microarchitectural characterization. We now
study the microarchitectural properties of the benchmark at
the saturation point with 1 CPU core and 7 Optane devices
(at the knee of the J curve in figure 5b). Figure 7a shows
the instructions needed per IOPS. Notice the significant de-
crease in the number of instructions needed for 4KiB I/O
from figure 3a (they have different y-axes). SPDK’s over-
heads have decreased by 17.9× (needing only 3.2 thousand
instructions/4KiB), whereas for non-polling libraries it only

decreases by 2×. Hence, at the saturation point, the polling-
based libraries become more efficient than the non-polling
ones. All libraries illustrate a similar IPC performance (fig-
ure 7b), thus hinting that the code complexity is similar
across all libraries, but their code lengths differ, hence larger
numbers of instructions/IOPS. Both non-polling and polling-
based libraries have the same IPC at the saturation point,
effectively amortizing the cost of polling. iou-s stands out as
an anomaly as it uses 2 CPU cores. In comparison to figure 3c,
the cache miss profile (figure 7c) shows improvements across
the spectrum under load.

3.2.3 Instruction breakdown. Lastly, we now discuss the
CPU instruction profile with single core and 7 devices. In
comparison to figure 4 as the load on the system increases,
SPDK spends fewer instructions on I/O processing (amorti-
zation, mostly on NVMe processing) and more on the bench-
mark fio (getting close to the ideal I/O stack). As we have
demonstrated previously, eventually fio itself becomes a bot-
tleneck. We further notice that all in-kernel stacks spend
approx. 35% of their instruction budget on the block layer,
which does not decrease or amortize beyond a point. In com-
parison with iou and iou-c, the kernel-related overheads are
decreased in iou-s.

3.2.4 Summary. All I/O stacks scale to the peak hardware
performance, but with significantly different CPU costs (Q3).
io_uring is more than an order of magnitude inefficient
than SPDK. SPDK-fio can saturate our hardware with 5 cores
or just a single core when using SPDK-perf. In contrast,
the best-performing io_uring configuration needs 13 cores.
The microarchitectural profile indicates a similar level of
code complexity (IPC) and data coverage (cache behavior),
but with significantly longer code paths (instructions/IOPS)
among the stacks. Furthermore, at high-loads, the bench-
marking tool (fio) becomes a bottleneck as shown by SPDK-
fio delivering 1.1 million IOPS and SPDK-perf delivering 4.2
million IOPS with a single core (4×).
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Figure 8. Comparison on the effect of Linux kernel I/O scheduler with increasing number of threads at queue depth = 128.

Table 2. Overheads from different block I/O schedulers.

none BFQ Kyber mq-deadline
iou 320.0 (1.0) 195.8 (0.61×) 264.6 (0.83×) 280.5 (0.86×)
iou-s 565.7 (1.0) 357.8 (0.63×) 470.1 (0.83×) 474.5 (0.84×)
iou-c 342.0 (1.0) 142.3 (0.43×) 175.3 (0.51×) 181.6 (0.53×)

3.3 Impact of I/O Schedulers
In this section, we investigate the overheads from three state-
of-the-practice Linux block I/O schedulers [10], BFQ [4], Ky-
ber [9], mq-deadline [11] (Q4). In this evaluation, we quantify
overheads of I/O schedulers by comparing their IOPS per-
formance with a none scheduler, which is a no-operation
(no-op) scheduler. All schedulers are configured with their
default parameters.

Originally designed for disks, BFQ (Budget Fair Queueing)
is a proportional-share I/O scheduler that guarantees each
application (using heuristics) a desired fraction of the stor-
age throughput by assigning a budget to weighted queues
(measured in sectors) [63]. Kyber is a self-regulating I/O
scheduler that separates reads (synchronous) and writes
(asynchronous) operations in separate queues, and only dis-
patches I/O requests to the hardware dispatch queue when
it can maintain a certain target latency (configurable) [32].
Kyber prioritizes reads over writes. Lastly, just like Kyber,
the mq-deadline scheduler also separates writes and reads
into separate queues, but it also sorts them in an increas-
ing logical block order. The sorting allows it to extract I/O
merging opportunities. The I/O is issued in batches from
the queues prioritizing reads. The past performance of read
and write queues determines how priority to read over
write is carried forward to the next round of batch I/O re-
quests [1]. A design of a fair and proportionally-shared I/O
scheduler for high-speed NVMe devices is a field of active
research [27, 33, 35, 49, 53, 60, 64].

Table 2 presents the throughput of these schedulers with
io_uring configurations with a single core and 7 devices at
the saturation point. We show the raw numbers and show
the relative slowdown against the none scheduler in the

parentheses. We report that all the I/O schedulers hurt the
throughput. BFQ has the worst performance among the three
schedulers, it delivers 0.43-0.63× of the none throughput.
Kyber and mq-deadline are better than the BFQ, but these
two schedulers still reduce the throughput by 14% to 47%.
iou-c is more sensitive to I/O schedulers, losing 20-30% more
throughput compared with iou and iou-s.
Figure 8 presents the throughput scaling of four sched-

ulers with an increasing number of threads with QD=128.
Keep in mind, iou-s takes 2× the number of cores, hence,
it is only run till 1-10 fio threads, which effectively takes
additional 1-10 kernel polling threads to get to 20 threads
(solid lines). We report that all three schedulers hurt the
throughput with Kyber having the least amount of over-
heads, thus the highest throughput. mq-deadline has a better
throughput than BFQ before running on the remote NUMA
node (more than 10 threads). In this setting, the throughput
of the mq-deadline drops as it contends on a lock for a global
variable in blk_mq_hw_ctx. This lock contributes to 79.6%,
28.7%, and 48.83% of the total CPU cycles for iou, ios-s, and
iou-c with 16, 16, and 12 threads, respectively. Kyber does
not use a global lock, which leads to a linear scalability of
the throughput.
In order to limit the NUMA impact, we also report on a

configuration (shown as the dotted line) where we restrict fio
threads (1-20 threads) to the NUMA node 1. In this case, the
mq-deadline does not deteriorate, while none and Kyber do
not reach the hardware limits (figure 8a). For iou-s (with the
kernel threads polling, whose CPU affinitywe do not control),
the NUMA restriction significantly hurts the performance
scalability of none and Kyber schedulers.

Summary: All three state-of-the-practice block I/O sched-
ulers have non-negligible performance overheads (14-57%).
Apart from that, they all suffer from scalability issues on
modern multi-socket NUMA machines. We plan to further
investigate the reason for this.
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4 Related Work
Linux storage stacks have undergone significant changes
over the past decade. These changes include using multi-
queue to avoid lock contention [20], optimizing the bottom-
half interrupt handler [54], introducing asynchronous to the
I/O path to hide latency [40], polling [18, 39, 70], eliminating
copying [36, 56], designing light-weight storage layer [40],
reducing interrupt and syscall costs [45, 59]. Yang et al. [68]
compare the performance between polling and interrupts
for low-latency SSDs. Xu et al. [66] analyze the perfor-
mance of NVMe devices and their impact on data-intensive
workloads like databases. Koh et al. [37] analyze the sys-
tem challenge with ultra-low latency SSD. I/O schedulers
have been studied in the past where their designs focus on
fair sharing or QoS (quality of service) in a multi-tenant
environment [28, 42, 48, 64]. However, even state-of-the-
art I/O schedulers like D2FQ still harm performance with
big access size (8KiB) and parallel access (6 threads) [64].
Userspace I/O stacks like SPDK [14, 69] are also used ex-
tensively as they allow to bypass kernel-related overheads
(including schedulers) [24, 34]. Apart from optimizing the
storage stack, there have been efforts to specialize it by using
application-specialized codes such as using eBPF codes for
caching or bypassing expensive I/O stacks for data process-
ing [19, 43, 72, 73]. This specialization allows for efficiency by
shortening the code path. Accelerators have also been used to
execute these specialized codes for data processing [57, 58].
Closest to our work is the recently published work by

Didona et al. that studies the performance and scalability of
libaio, io_uring, and SPDK. We build on their findings and
further report on: (i) analysis with Intel Optane SSD devices
that are known to show different performance characteris-
tics than NAND flash SSDs [65]; (ii) detailed performance
breakdowns with microarchitectural, and instructions pro-
files; and (iii) I/O request scheduling related overheads with
the three Linux block I/O schedulers.

5 Conclusion and Future Work
In this work, we systematically study the performance and
scalability of the Linux I/O stack with four different I/O APIs:
POSIX I/O, asynchronous libaio, io_uring, and userspace
SPDK stacks. Our findings reveal that SPDK is still the de-
facto winner in terms of raw performance and I/O efficiency
(instructions/operation). Given enough CPU cores, the per-
formance of io_uring does scale and matches the perfor-
mance of SPDK, but consequently loses in terms of I/O ef-
ficiency. The Linux I/O scheduler can introduce significant
overheads. We also report on the detailed instruction break-
down how the CPU instructions are used across different
I/O stack components. Our results summarize that the Linux
storage stack still has significant performance overheads, and
scalability challenges in the presence of high-performance,
low-latency NVMe devices. As a next step, we are expanding

our study to include file systems (ext4, F2FS, XFS), complex
workloads (databases [26], key-value stores [23], machine
learning training [47], bioinformatics [44], graph process-
ing [50, 52]), mixed read-write workloads, and mixed priority
tenants with/without a disaggregated setting [46].
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