
1

Storage Systems (StoSys)
XM_0092

Lecture 3: FTL and GC

Animesh Trivedi
Autumn 2023, Period 1

Syllabus outline
1. Welcome and introduction to NVM (today)
2. Host interfacing and software implications
3. Flash Translation Layer (FTL) and Garbage Collection (GC)
4. NVM Block Storage File systems
5. NVM Block Storage Key-Value Stores
6. Emerging Byte-addressable Storage
7. Networked NVM Storage
8. Trends: Specialization and Programmability
9. Distributed Storage / Systems - I

10. Distributed Storage / Systems - II
11. Emerging topics

2

For the next lecture: File System

Refresh your idea of a basic file system
files, directories, inodes, etc.

Checkout the background reading section on
Canvas:
https://pages.cs.wisc.edu/~remzi/OSTEP/file-implementation.pdf 3

https://pages.cs.wisc.edu/~remzi/OSTEP/file-implementation.pdf

NAND Flash constraints
● Complex internal geometry

● No in-place updates
○ Any in-place writes must do a

full block read-erase-write cycle

● Limited Program/Erase (P/E) cycles

● No mechanical latency

● Asymmetric read-write performance
○ Reads from flash chips is typically faster than writes

● Sequential page writes/programming within a block

● Anything else?
4

X X

W

We continue to use terms page and blocks in the lectures

Recall - What is a Flash Translation Layer (FTL)

5

File Systems (ext4, FAT, NTFS)

SATA or SAS or NVMe Interface

FTL Address
Translation

read/write LBAs

hardware

kernel
LPA(42)

0x0000 0x1000 0x2000 0x3000 0x4000
(if pages/sectors are 4kB in size)

Logical Page
Address (LPA)

Logical Page Addresses (LPA) is what a host software sees

● A host can issue a read/write operation on a particular LBA
● Based on the device, it can be 512 bytes (backward compatible - BIOS might not know

about 4kB pages) or some kB (to match the actual flash page size, 4 or 8 kB)

Recall - What is a Flash Translation Layer (FTL)

6

File Systems (ext4, FAT, NTFS)

SATA or SAS or NVMe Interface

FTL Address
Translation

read/write LBAs

hardware

kernel
LPA(42)

plane

plane

die

plane

plane

die

plane

plane

die

plane

plane
die

plane

plane

die

plane

plane

die

0x3234

Logical Page
Address (LPA)

Physical Page
Address (PPA)

Responsibility: keep track of all writes and
mappings from LPA to PPA locations

Recall - What is a Flash Translation Layer (FTL)

7

FTL Address
Translationhardware

plane

plane

die

plane

plane

die

plane

plane

die

plane

plane
die

plane

plane

die

plane

plane

die

Responsibility: keep track of all writes and
mappings from LPA to PPA locations

What happens when the whole device is written once? Without Erase?

Recall - What is a Flash Translation Layer (FTL)

8

FTL Address
Translationhardware

plane

plane

die

plane

plane

die

plane

plane

die

plane

plane
die

plane

plane

die

plane

plane

die

What happens when the whole device is written once? Without Erase?

Garbage collection - move data around to prepare blocks for erase

FTL Address
Translation Garbage Collection

What does GC do?

9

page0

page1

page3

page2

block0

page0

page1

page3

page2

block0

Erase
(in-place)

If the whole
block was
old mappings

(a) (b)

IF the whole block (all pages) contains old data (shown as red) then the FTL can issue the erase
command on the block

● Block will be erased, and ready for re-programming
● Put in the pool of free blocks

Easy, right?

What does GC do?

10

page0

page1

page3

page2

block0

What if page0
and page2
have data?

page0

page1

page3

page2

page0

page1

page3

page2

block2

1. Find a free
block

2. Copy

4. Erase the block?

What else should we consider?

FTL address
mapping logic

3. Update the address
mapping logic

How does GC find free blocks?

11

If a device is 8GB, and we wrote 8GB of data then where is the free space?

Concept: Over Provisioning (OP)

12

If a device is 8GB, and we wrote 8GB of data then where is the free space?

Answer: Over Provisioning, have more than what you report (or report less to user/OS)

Total flash blocks

User/OS usable

Reserved for internal use

So in essence, your 16 GB flash drive internally might
be 17, 18, or 20 GB flash drive. Sometimes, OP is
configurable, other times it is a trade-secret

● More: better performance, more space for GC, expensive
● Low: cheaper, but less margins for errors

 Total capacity - user capacity
Over Provision = ----------------------------------
 User capacity

Same over provisioned blocks are also used to
manage bad blocks

Concept: Write Amplification (WA)

13

page0

page1

page3

page2

block0
page0

page1

page3

page2

page0

page1

block2

page1OS kernel

Device
(hardware)

Block layer

page1

page2

page3

What is happening here : copy-merge-write
cycle

1. The OS/kernel writes 4kB page
2. Internally device has to read 16kB and then

write out again 16kB after the modified page

 data written to device
Write amplification = ------------------------------
 data written by user

Here amplification is 4x. The exact value depends
upon the page/block size, how many free blocks,
FTL design, and many more…

A device can also expose smaller than the page
I/O units like 512 bytes sectors

Concept: Wear Leveling

14

Different flash pages get written and programmed at a different rate
● How frequently they are written
● How frequently they are erased

As a result - their remaining age is different. For SLC chips, 100K is a typical number of
cycles available
● Page 0 and 2 are really healthy and not much written
● Page 1 has only half of its PE cycle remaining
● Page 3 has close to death → error rate will increase significantly, and block will be

marked bad
An ideal flash drive will try to spread the load evenly across all pages - wear leveling

page 0 page 1 page 2 page 3

100K
75K
50K
0

Concepts: Steady State
When you have a fresh SSD (Fresh out of the Box, of FoB):
● All pages/blocks are erased
● All pages have full life time
● GC has not done much work
● FTL mappings all empty

If you benchmark your SDD in this state you get a very different performance results,
because
● No erasure has been done so far
● No running out of the blocks, need to look for new blocks
● No FTL lookups to update entries

In fact, of you get a FoB flash SSD - it might be the case that you get < 1 useconds for
reading pages and blocks - can you guess why?

15

Steady State: Impact

16
https://www.micron.com/-/media/client/global/documents/products/technical-marketing-brief/ssd_performance_states_tech_brief.pdf

Almost
A
Order
Of
Magnitude
Gap

https://www.micron.com/-/media/client/global/documents/products/technical-marketing-brief/ssd_performance_states_tech_brief.pdf

FTL Responsibilities
1. Address Translation

a. Map user visible pages to internal flash locations

2. Garbage Collection
a. Clear old blocks which do not have “live” data

3. Wear Leveling
a. Make sure not to “burn” one block and all blocks “age” uniformly

i. BTW - is this uniform aging a good idea?

4. Parallelism and Load Balancing
a. Use all parallel units for performance

5. Bad Block Management
a. Error corrections
b. When blocks are bad (they develop a high read/write error rate, mark them and don’t use)

Also, work in a resource constrained environment with limited CPU power and
DRAM 17

Flash device setup

18

Flash Controller,
Embedded CPU - ARM

Memory (SRAM)

FP FP FP FP

FP FP FP FPSystems interface
(e.g., USB, NVMe,
SCSI)

The embedded CPU runs
the FTL logic
● Embedded FTL

Can use a bit of local
memory for staging data

What could be the simplest
design you can think of?

Little bit out-of-band data

Design 1: A directly mapped FTL

19

I xxxxxxxxxx 0xabcdabcd 0xdeadbeef

0x0 0x1 0x2 0x3

A simple directly mapped FTL

● Trivial look up - fast and simple
● When read comes up for a LPA(x), read the PPA(x)
● When write comes up

○ If the page is in “E” (erased) state then simple, write it out (write1, W1)
○ If the page is in “I” (invalid) or “W” (written) state then the FTL needs to

erase the whole block, not just a single page

block_0 block_1

W1 W2

Design 1: A directly mapped FTL

20

0xabcdabcd 0xdeadbeef

1. Copy the whole block

0x1a2b3c4d 0xdeadbeef

2. Update the new content

xxxxxxxxxxx xxxxxxxxxx

0xabcdabcd 0xdeadbeef

3. Erase the block

3. Write the new block

SRAM
So, what is the write
amplification factor here?

What are the challenges with
such directly mapped design?

Issues with the directly mapped FTL
1. Performance

a. Every over-write to a page will result in a full copy-erase-write cycle
b. Very high write amplification factor

i. Directly proportional to the number of pages in a block

2. Wear-leveling
a. Not all pages are equally popular
b. Physical pages containing frequently written data (called HOT data) will be erased many times, thus

wearing them out
i. Every flash page has a finite number of P/E cycle (e.g., 100K for SLC)
ii. After exhausting their quotas, they will develop high error rates

c. One way to fix would be to tell the application to write evenly across the whole device, but applications
rarely write pages, file systems do

3. In-place updates
a. During a failure, the in SRAM content might be lost

Any advantage of such trivial-design?
21

Let’s do a Bit Better

22

LPA PPA Valid/Flags

0 0x3 I

1 0x0 E

2 0x1 W

3 0x3 WI xxxxxxxxxx 0xabcdabcd 0xdeadbeef

0x0 0x1 0x2 0x3

Invalid, Written, Erasedblock_0 block_1

W1 W2

0x0 0x1 0x2 0x3

Lets keep track of “mappings” in a table, and we can rearrange them when they needs to updated

Two types (same idea as the page tables in the CPU):
● Directly mapped - from logical to physical mappings - fast lookup (but failure prone)
● Inversely mapped - from physical to logical mappings, easy to reverse lookup, and construct

a mappings after failure

A device can use one or mix of these two.

Page-Mapped FTLs
Does tracking of LPA (arbitrary) → PPA (arbitrary)

23

LPA PPA Valid/Flags

Invalid, Written, Erased

I I I I II I I I I I I

0 1 2 3 4 5 6 7 8 9 10 11
 Block 0 Block 1 Block 2

E E E E EE E E I I I I

0 1 2 3 4 5 6 7 8 9 10 11
 Block 0 Block 1 Block 2

Erase the first two blocks

Page-Mapped FTLs

24

LPA PPA Valid/Flags

0 0 E -> V

100 1 E -> V

101 2 E -> V

400 3 E -> V

Invalid, Written, Erased

a1 a2 a3 a4 EE E E I I I I

0 1 2 3 4 5 6 7 8 9 10 11
 Block 0 Block 1 Block 2

For Write
- As the new content comes in, we fill in the next pages we have around.
- Simple strategy (multiple policies possible regarding the selection of the next free page -

not all free pages are created equal ...any guesses?)
For read

- Lookup in the table the location of PPA and then issue a read to the flash chip

W(0, a1), W(100,a2), W(101, a3), W(400, a4), W(100, b1)

Page-Mapped FTLs : Overwriting

25

LPA PPA Valid/Flags

0 0 V

100 1 “I”

101 2 V

400 3 V

100 4 V

Invalid, Written, Erased

a1 a2 a3 a4 Eb1 E E I I I I

0 1 2 3 4 5 6 7 8 9 10 11
 Block 0 Block 1 Block 2

W(0, a1), W(100,a2), W(101, a3), W(400, a4), W(100, b1)

When a new content comes in, FTL marks the old location invalid, and choose a new page to
write the new content
● If the write was for a full page, then just write to the new location and update the table
● If the writes was less than the page then

○ Read the old content, merge, and then write the merged paged to page 4
This is called out-of-place writes - also helps with the failure (as the old content is kept)

1

2
4

3

The good and bad about Page-level FTLs
The Good
● Most flexible, the best performance, least amount of WA as only a single page is merged

The Bad
● How much memory 1TB SSD need with 4kB pages?

○ Let's assume at least 8 bytes entry per page
○ 1TB / 4kB = 256 million entries
○ In total the size of the FTL table: ~2 GB (this much SRAM in your SSD)
○ We are not even talking about space for other items yet

● So why cannot we put 2 GB of memory in SSDs?
○ Complexity - form factor, electricity, circuitry, power
○ Price, will get super expensive. Memory is expensive

Any idea what can be done here? 26

Block-Level Mapping
Instead of keeping track of per-page mapping, keep track of per-block mapping

Recall: A block is a collect of pages (10-100s of pages), it is the unit of erase

So by what factor, the size of the table will be decreased? Number of pages in a
block. So, let's do the calculation again:
● 1 TB / 128 KB x 8 bytes = 64 MB (still large, but manageable)
● SSDs can have 256-512kB blocks.

So this is it then?
27

Basic working: Reads and Writes

28

LBA PBA Valid/Flags

8000 0 V

400 1 V

Invalid, Written, Erased

E E E E EE E E E E E E

0 1 2 3 4 5 6 7 8 9 10 11
 Block 0 Block 1 Block 2

W(8000, a1), W(400,a2), W(700 a3), W(8100, a4)

1

2

Assume a size of 100 bytes for each page, block size 400 bytes (4 pages/block)

a1 a4 E E Ia2 I a3 E E E E

0 1 2 3 4 5 6 7 8 9 10 11
 Block 0 Block 1 Block 2

2

Read : find the block level mapping,
● R(8100) comes in : block address (8000) + page offset (1)
● Lookup PBA of 8000, this is 0
● read(0 + 1) for the content of LPA(8100)

Offset based address calculation ← Important!

Nice, small FTL table

Challenges with the Block-Level Mappings

29

LBA PBA Valid/Flags

8000 0 V

400 1 V

Invalid, Written, Erased

W(8000, a1), W(400,a2), W(700 a3), W(8100, a4), W(8000, b1), W(500, b2)

Assume a size of 100 bytes for each page, block size 400 bytes

a1 a4 E E Ia2 I a3 E E E E

0 1 2 3 4 5 6 7 8 9 10 11
 Block 0 Block 1 Block 2

Now what?
● What to do with W(8000)? This is an overwrite
● What to do with W(500)? This is a write in the middle of a block

The only thing we can do is to copy, merge, and write out the content of blocks 0 and 1 to a new
blocks (block 2, if no more available then erase blocks) → High Write Amplification factor

Challenges with the Block-Level Mappings

30

LBA PBA Valid/Flags

8000 0 V

400 1 V

Invalid, Written, Erased

W(8000, a1), W(400,a2), W(700 a3), W(8100, a4), W(8000, b1), W(500, b2)

Assume a size of 100 bytes for each page, block size 400 bytes

a1 a4 E E a2 a3 E E E E

The key problem is that due to the offset calculation the location of a page is fixed inside
a block. We cannot just choose the next free page inside a block

● Expensive read-merge-erase-write cycle that we saw with the directly-mapped design

The second problem is dependency on the write pattern → Very important problem!

0 1 2 3 4 5 6 7 8 9 10 11
 Block 0 Block 1 Block 2

I I

FTL Design Options so far

1. Page-level FTLs
a. Good mapping granularity
b. Any page can be mapped anywhere, less sensitive to workload patterns
c. But, large FTL size and need large SRAM in flash

2. Block-level FTLs
a. Small FTL size
b. High write amplification factor
c. Sensitive to workload patterns

There are variants to both page-, and block-level FTLs that helps to mitigate these issues to a
certain extend (we are skipping them here)

As usual, the question here is that if we can we do better? 31

Question: What is the most
important data structure you know?

 (obviously, it can not be a factual answer, but what do we think?)

32

hint

Log: A very powerful data structure
A sequential appending data structure
● Write only at the end (tail)
● Read from anywhere

Many unique properties

● No in-place updates, once written, the data becomes immutable
● Serialized writing, one point of writing, the tail - either the write succeeds or not (atomicity)
● Converts a random write to a sequential one ← very important
● Parallel reading
● Ordering of events (writes, transactions, or whatever)
● Logging events (used in DBs, file systems) for failure recovery

We will see use of logs in FTLs, flash file system designs, distributed systems. One of
the most important data structures around, and it matches NAND flash properties! 33

write

reads

Hybrid-Log FTLs

Divide the NAND flash device into two parts: Data and Log

● Data blocks
○ Contains the stable data
○ Mapped per-block (or zone) basis

● Log blocks
○ All fresh writes go to log pages
○ All filled in a strictly sequential pattern, from low page to higher pages

Mapped per-page basis

At some point in time data is moved from the log to the data blocks

34

Data block Logs

Writes
Reads

Working of a Hybrid-Log FTL - Simple Case

35

W(8000, a1), W(8100,a2), W(8200, a3), W(8300, a4)

a1 a2 a3 a4 E E E E

0 1 2 3 4 5 6 7 8 9 10 11
 Block 0 Block 1 Block 2

LBA PBA Valid/Flags

LPA PPA Valid/Flags

8000 4 V

8001 5 V

8002 6 V

8003 7 V

EE E E

A nice sequential pattern

● Block 1 is currently used as a log block which absorbs
incoming writes

● Once filled, then we can convert it to a “data” block and map
it as a “block-level” entry

Data Block Mappings

Log Page Mappings
log

Working of a Hybrid-Log FTL - Simple Case

36

W(8000, a1), W(8100,a2), W(8200, a3), W(8300, a4)

a1 a2 a3 a4 E E E E

0 1 2 3 4 5 6 7 8 9 10 11
 Block 0 Block 1 Block 2

LBA PBA Valid/Flags

8000 1 v

LPA PPA Valid/Flags

8000 4 V

8001 5 V

8002 6 V

8003 7 V

EE E E

A nice sequential pattern

● Block 1 is currently treated as a log block which absorbs
incoming writes

● Once filled, then we can convert it to a “data” block and map
it as a “block-level” entry

This is called “Switch Merge”

Data Block Mappings

Log Page Mappings

Working of a Hybrid-Log FTL - Updates to the Block

37

W(8000, b1), W(8100,b2)

a1 a2 a3 a4 b1 b2 E E

0 1 2 3 4 5 6 7 8 9 10 11
 Block 0 Block 1 Block 2

LBA PBA Valid/Flags

8000 1 v

LPA PPA Valid/Flags

8000 8 v

8100 9 v

EE E E

New updates to already written blocks (but still in order)

● Pick up a new “log” block, say block 2
● Use page 8 and 9 to write new values

Read order: first check the Log, and then Data block. (fresher data is always in
the Log)

Then at some point we can merge the data block 1 and log block 2

Data Block Mappings

Log Page Mappings

log

Working of a Hybrid-Log FTL - Updates to the Block

38

b1 b2 a3 a4

0 1 2 3 4 5 6 7 8 9 10 11
 Block 0 Block 1 Block 2

LBA PBA Valid/Flags

8000 1 → 2 v

LPA PPA Valid/Flags

8000 8 v

8100 9 v

EE E E

New updates to already written blocks (but still in order)

● Pick up a new “log” block, say block 2
● Use page 8 and 9 to write new values

Then at some point we can merge the data block 1 and log block 2

This is called “Partial Merge”

Data Block Mappings

Log Page Mappings

Copy old data Mark this block garbage

a1 a2 a3 a4

Working of a Hybrid-Log FTL - Updates to the Block

39

W(8300,c1), W(2300,c2), W(7400,c3), W(8100,c4)

LBA PBA Valid/Flags

8000 2 v

LPA PPA Valid/Flags

8300 0 V

2300 1 v

7400 2 V

8100 3 V

Now completely random writes, take block 0 as the log block
● Multiple writes might have come here

○ Some for already valid entries (like 8000-8400 range)
○ Some for a new writes, previously unmapped

What happens now?

Data Block Mappings

Log Page Mappings

b1 b2 a3 a4

0 1 2 3 4 5 6 7 8 9 10 11
 Block 0 Block 1 Block 2

EE E E

log

a1 a2 a3 a4

Working of a Hybrid-Log FTL - Random Writes

40

W(8300,c1), W(2300,c2), W(7400,c3), W(8100,c4)

LBA PBA Valid/Flags

8000 2 → 1 v

LPA PPA Valid/Flags

8300 0 V

2300 1 V

7400 2 V

8100 3 V

Data Block Mappings

Log Page Mappings

b1 b2 a3 a4

0 1 2 3 4 5 6 7 8 9 10 11
 Block 0 Block 1 Block 2

c2c1 c3 c4

E E E E b1 b2 a3 a4

b1 b2 a3 a4c4b1 a3 c1

Erase

c2c1 c3 c4

c2c1 c3 c4

b1 b2 a3 a4c4b1 a3 c1c2c1 c3 c4

Merge

Convert from a log to data block

a1 a4a2 a3

Working of a Hybrid-Log FTL - Random Writes

41

W(8300,c1), W(2300,c2), W(7400,c3), W(8100,c4)

LBA PBA Valid/Flags

8000 1 v

LPA PPA Valid/Flags

8300 0 V

2300 1 V

7400 2 V

8100 3 V

Data Block Mappings

Log Page Mappings

a1 a2 a3 a4 b1 b2 a3 a4

0 1 2 3 4 5 6 7 8 9 10 11
 Block 0 Block 1 Block 2

c2c1 c3 c4

E E E E b1 b2 a3 a4

b1 b2 a3 a4c4b1 a3 c1

Erase

c2c1 c3 c4

c2c1 c3 c4

Merge

This is called “Full Merge”
● Quite expensive
● FTLs try to avoid as much as possible this state

However, it is very difficult to predict
● When is the right time to merge
● What is the upcoming read/write pattern

b1 b2 a3 a4c4b1 a3 c1c2c1 c3 c4 Convert from a log to data block

Choices between Data and Log Blocks
Each device can have multiple log blocks…

Which log blocks should track updates from which data blocks?

1. Block associative: each data block has its own private log block (1:1)
a. trivial updates and merging (only switch and partial, never full), but 2x capacity waste

2. Set associative: “n” log blocks serve writes for a set of consecutive “m” data blocks
(n:m)

a. Balance between the merge cost and flexibility

3. Fully associative: any log block can track updates from any data blocks (any:any)
a. most flexible, but need full merge
b. You will be implementing this for project milestones M2/M3

A device can implement a mix of any of these for various workload patterns 42

So far we have seen
● Read and write access patterns can affect the performance
● Random writes in the middle of a block are bad

○ Leads to partial/full merge (cannot do just switch merge)

● Sequential, large writes are good - more opportunities for the switch merge

The FTL design and data caching (in SRAM) in devices are managed together
● Whenever a data is ready to be flushed out to NAND chips, corresponding FTL entries are also written

out (there is a FLUSH command in NVMe)
● One keeps a “working set” of hot data pages and FTL mappings in SRAM memory (like CPU TLBs)

Hence, locality matters with SSDs (did not we say random and sequential performance is the
same for SSDs?)

43

Also to consider
Are sequential reads also better than the random ones?

● Because even with the hybrid strategy the size of block-level data table,
and the page-level log table can be large
○ They are stored on the flash and brought in demand to SRAM (caching)
○ A single block-level entry covers “x” numbers of pages
○ Hence, sequential/close LPAs have faster performance than the random ones

Freshly formatted device (no data) have a very low write/read latency (< 10 usec)
● The device knows there is no old data, write to the best location
● The device knows no data has been written so far, read with zeros
● Even with writes, most writes can be absorbed with on-device SRAM (needs flush)

To benchmark a device, always bring the device first in a steady state 44

A Typical Example (2016)

45

Some drop in randomized read performance

Drop in random write performance
(but not as bad as HDD)

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/VLDB2010-camera.pdf

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/VLDB2010-camera.pdf

Garbage Collection
So far we have implicitly discussed that
● A new free block is always available
● Old marked blocks are somehow erased in the due time

How does this happen? The process of erasing blocks with old data to make
them suitable for new data is called Garbage Collection (GC)
● A block to be erased might contain some live and some expired/dead data

Terminology:
● Live data - which is the correct, freshest copy of the data
● Dead/expired - old, overwritten or deleted data, which is no longer needed
● Age of a block/page - representing the number of P/E cycle a page/block has gone through

(recall: there is a finite number of cycles)
46

Why bother about
the GC?

47(2017) https://vpsmate.net/lies-damn-lies-ssd-benchmark-test-result1.html

A flash device has limited resources. If the embedded
CPU is occupied running the GC, how is it going to
server a user request (interference)? Bad impact on
worst case latencies (95 and 99 percentiles)

Hence, it is important to understand GC internals
and do “SSD-friendly” data management on flash
devices (see later, Unwritten Contracts)

Flash
Controller User I/O Flash

Chips

Internal GC
I/O traffic

https://vpsmate.net/lies-damn-lies-ssd-benchmark-test-result1.html

On our cluster

48

[Seq] 7,000 MB/s Reads and 5,000 MB/s Writes

~200 MB/s

~1,400 MB/s

https://www.samsung.com/us/computing/memory-storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-1tb-mz-v8p1t0b-am/
(2020) Diego Didona, Nikolas Ioannou, Radu Stoica, and Kornilios Kourtis. 2020. Toward a better understanding and evaluation of tree structures
on flash SSDs. Proc. VLDB Endow. 14, 3 (November 2020), 364–377. https://doi.org/10.14778/3430915.3430926

https://www.samsung.com/us/computing/memory-storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-1tb-mz-v8p1t0b-am/
https://doi.org/10.14778/3430915.3430926

A Typical GC Cycle

49

1. Invoke GC

2. Pick a new block

3. Pick a victim block

4. Copy, merge
and update

4. Erase the victim block
add to the free list

Multiple design choices

1. How to find live-dead data?
2. When to invoke GC?
3. How to select the victim block(s)?
4. How to minimize interference

with the user/system I/O?
5. How to stage data for better GC?
6. How to do high-performance GC?

Identifying “live” vs “dead” data pages

50

a1 a2 a3 a4 b1 b2 E E

0 1 2 3 4 5 6 7 8 9 10 11
 Block 0 Block 1 Block 2

EE E E

/tmp/application.log

Internally FTL keep track of LPA to PPA mappings
● Every time a new version of the page is written, the previous one can be marked as “dead”

Consider the case below ….

In this case, various files which were created at the systems / file system and application level were
created, written to, and then deleted. How does the FTL know about blocks mapped to these files?
Technically they contain “dead” data.

Ideas?

TRIM Command (or Deallocate in NVMe)

51

a1 a2 a3 a4 b1 b2 E E

0 1 2 3 4 5 6 7 8 9 10 11
 Block 0 Block 1 Block 2

EE E E

/tmp/application.log

TRIM: a new command (apart from read/write) for SSDs
● tells an SSD if a range of page addresses are no longer needed
● remove the associated FTL entries internally within the SSD
● mark those pages dead (to be garbage collected)
● can trigger GC to reclaim those pages

1. delete(/tmp/application.log)
2. TRIM(start LPA:4, count:6)

When to invoke GC?
As quickly as possible
● interferences with the user I/O request
● contention on shared data and control channels
● useless work if the data written was temporary

As late as possible
● might run out of free blocks
● difficult to handle bursty data (if not free block available)

Typically, during the idle periods
● check the command queue and model when will be the next free window for GC
● when run out of block, then the FTL MUST run the GC (no other option)
● we cannot predict the future write-patterns - or can we? (ML, anyone?)

52

How to Select a Target/Victim Block
● Random: a good and simple strategy if writing load is uniform across the

whole device (how often is this the case?)
● FIFO, RR: pick the last block that was erased and use it

○ Advantage: uniform wear leveling across all blocks
○ THINK: do you have a choice when using a LOG?

Is this good enough? Any other ideas? Or what other criterias should we consider?

53

Which Block is Preferred?

54

(a) (b)

Block (a) contains ¾ dead pages
Block (b) contains ¼ dead pages

Block (a) gives maximum free space for minimum amount of data
copies, also reduces write amplification. Pick the one with least
amount of live data. Greedy approach.

What if the Block (a) was an old block, close to 90K PE cycles (out of
100K) and Block (b) was at 50K? What is a better option now?

Some sort of cost-benefit Trade-off (CBT)
● Cost is a function of (amount of work, age, SRAM needed?)
● Benefit is amount of free space reclaimed (and the aging, etc. etc.)

How to Select a Target/Victim Block
● Random: a good and simple strategy if writing load is uniform across the

whole device (how often is this the case?)
● FIFO, RR: pick the last block that was erased and use it

○ Advantage: uniform wear leveling across all blocks
○ Problem: what if the last block contained all “live” data?

● Greedy: Pick the block which has the least amount of “live” data
○ Advantage: minimum amount of live data copy, maximum free space reclamation
○ Challenge: what about wear leveling?

● Cost-Benefit: various strategies that mix (i) live data amount; (ii) age of
the block; (iii) amount of memory required for state keeping;

As you can see there is not strategy that wins all. Modern device FTLs use a
combinations of these strategies 55

At this point
1. FTL seems complicated, and there is no single win strategy for all

a. Hidden from the systems and applications (no SSD API to talk to it)
2. GC seems complicated and there is no single win strategy for all

a. Hidden from the systems and applications (no API to talk to it)

3. Both of them are resource heavy
a. Need CPU power
b. Need DRAM/SRAM on board

4. A large design space with multiple objectives
a. Performance, very much workload dependent
b. Wear-leveling, minimize interference, binning and grouping of data

Is there is a better way to tackle these challenges …

56

Host-Based FTLs
Implement all the complex logic on host, why?

● Host has a powerful CPUs (multicore Intel CPUs)
● Host has a lot of DRAM (10-100s of GB)
● All GC and user traffic is visible to the host FTL, no hidden state
● Application-specific customization possible, no need to restrict yourself on the Block interface

Examples: OpenChannel SSDs and LightNVM infrastructure, Baidu’s Software-defined
Flash, and now NVMe Zone namespace (ZNS) devices

● ZNS devices do not have complete FTL, but the control over the GC at the host
● Another emerging standard is NVMe Flexible Data Placement (FDP)

○ https://nvmexpress.org/nvmeflexible-data-placement-fdp-blog/

On device FTLs are called “Embedded FTLs” vs “Host-based FTLs” 57

https://nvmexpress.org/nvmeflexible-data-placement-fdp-blog/

Baidu’s Software Defined Flash

58

Software-Defined Flash Architecture

59

● Full control over I/O Stack (exposed parallelism)
● Full control over GC (reduce interference with user I/O)
● Full control over device provisioning, can be customized for workloads
● Predictable Performance when to do read/write/erase

SDF: Performance Example

60

The Idea itself is Not New
Fusion-IO (and other companies, Violin Memory) did it back in 2007, run FTL on the
host-CPU

Multiple embedded systems do the same, FTL runs on their embedded CPU which
is running the application

Scale and deployment of execution is unique in the Baidu’s case, but many
cloud-scale vendors do that now

Pretty cool and influential work

- The idea of opening up flash is used in multiple projects, Open-Channel SSDs,
streaming API, Application-managed flash, and now Zone Namespace (ZNS)
devices 61

Design of FTL is a very large field
What we are not covering yet

1. How to extract parallelism... (allocation)
a. For example, if reading 1MB from a device,

it would be nice if its blocks and pages were
distributed across parallel dies for performance

i. Striping: horizontal, vertical, n-dimensionals

2. Wear-leveling
a. Static vs Dynamic wear leveling
b. Keeping track of block ages
c. Keeping track of hot and cold data and separate them into various logical “age bins”

3. Failure and bad/corrupted block management
a. ECC checks and corrections
b. Maintenance of bad block maps
c. See, Errors in Flash-Memory-Based Solid-State Drives: Analysis, Mitigation, and Recovery,

https://arxiv.org/abs/1711.11427
62

https://arxiv.org/abs/1711.11427

Further reading

63

Nanqinqin Li, Mingzhe Hao, Huaicheng Li, Xing Lin, Tim Emami, and Haryadi S.
Gunawi. 2022. Fantastic SSD internals and how to learn and use them. In
Proceedings of the 15th ACM International Conference on Systems and Storage
(SYSTOR '22). Association for Computing Machinery, New York, NY, USA, 72–84.
https://doi.org/10.1145/3534056.3534940

https://doi.org/10.1145/3534056.3534940

Based on all these details : Unwritten Contract

64

What are Unwritten Contract
The Written contract is the API from the device, essential to get the basic
function working

● Read, Write, Flush, Trim ← The essentials

The Unwritten contract is for performance

● Fluctuation in the performance due to the internal SSD complexity that
you have seen so far

● Multi-level details to take into consideration

How can you develop your application for the best performance?

65

Unwritten Contract
1. Request Scale

a. Leverage parallelism

2. Locality
a. Respect locality with the FTL mappings

3. Align Sequentially
a. Access aligned data to help the FTL

4. Group by Death Time
a. Gives the best chance to

GC for clean up

5. Uniform Data Lifetime
a. Group data with the same lifetime to uniformly wear out flash pages

66

What You Should Know from this Lecture
1. Concepts: wear-leveling, over provisioning, write amplification, steady

state
2. Three basic FTL designs: page-level, block-level, and hybrid

a. Their advantages and disadvantages

3. GC design choices
a. Trim command
b. Various victim block selection algorithms

4. Embedded vs host FTL design options
a. Advantages of host-based FTL designs

5. How do these design choices influence the performance of an SSD

67

Further Reading
● [Important] Chapter 44, Flash-based SSDs, http://pages.cs.wisc.edu/~remzi/OSTEP/file-ssd.pdf
● An Evaluation of Different Page Allocation Strategies on High-Speed SSDs,

https://www.usenix.org/system/files/conference/hotstorage12/hotstorage12-final55.pdf
● Wear Unleveling: Improving NAND Flash Lifetime by Balancing Page Endurance,

https://www.usenix.org/conference/fast14/technical-sessions/presentation/jimenez
● Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2017. The Unwritten Contract of Solid State Drives.

In Proceedings of the 12th ACM EuroSys, 2017.
● LightNVM: The Linux Open-Channel SSD Subsystem, https://www.usenix.org/system/files/conference/fast17/fast17-bjorling.pdf
● Eran Gal and Sivan Toledo. 2005. Algorithms and data structures for flash memories. ACM Comput. Surv. 37, 2 (June 2005), 138–163.
● Dongzhe Ma, Jianhua Feng, and Guoliang Li. 2014. A survey of address translation technologies for flash memories. ACM Computing

Surveys 46, 3, Article 36 (January 2014), 39 pages.
● Luc Bouganim, Björn Þór Jónsson, Philippe Bonnet: uFLIP: Understanding Flash IO Patterns. CIDR 2009.
● Andrew Birrell, Michael Isard, Chuck Thacker, and Ted Wobber. 2007. A design for high-performance flash disks. SIGOPS Operating

Systems Reviews. 41, 2 (April 2007), 88–93.
● Feng Chen, Tian Luo, and Xiaodong Zhang. 2011. CAFTL: a content-aware flash translation layer enhancing the lifespan of flash

memory based solid state drives. In Proceedings of the 9th USENIX FAST, 2011.
● Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. 2009. DFTL: a flash translation layer employing demand-based selective

caching of page-level address mappings. In Proceedings of the 14th ACM ASPLOS, 2009.
● Ji-Yong Shin, Zeng-Lin Xia, Ning-Yi Xu, Rui Gao, Xiong-Fei Cai, Seungryoul Maeng, and Feng-Hsiung Hsu. 2009. FTL design exploration in

reconfigurable high-performance SSD for server applications. In Proceedings of the 23rd ACM ICS 2009.

68

http://pages.cs.wisc.edu/~remzi/OSTEP/file-ssd.pdf
https://www.usenix.org/system/files/conference/hotstorage12/hotstorage12-final55.pdf
https://www.usenix.org/conference/fast14/technical-sessions/presentation/jimenez
https://www.usenix.org/system/files/conference/fast17/fast17-bjorling.pdf

Backup Slides

69

Static vs. Dynamic Wear Leveling

70

a1 a2 a3 a4 E E E

0 1 2 3 4 5 6 7 8 9 10 11
 Block 0 Block 1 Block 2

b2b1 b3 b4

a1 a2 a3 a4 c1 c2 c3EE E E

E

c4

LBA PBA Valid/Flags

8000 0 v

400 1 v

W(8000, c1-c4), W(8000, d1-d4), W(8000, e1-e4)

a1 a2 a3 a4d2d1 d3 d4 E E E E

Dynamic wear-leveling: In this example, block 0 and 2 are written continuously, thus, also aged
continuously

But what about block 1? The FTL did not change the block location 1 because it was never updated.

Static Wear-leveling: Cycle around all the blocks (even, the cold, static blocks) too. Time to time, FTL
will read the old blocks and just move them around for even wear-leveling

LBA PBA Valid/Flags

8000 2 v

400 1 v

Impact of Workload Patterns

71

ctime

name

0101010

0101010

Metadata of the file

Content of the file

ctime

name

0101010

0101010

A new write, that is
buffered in SRAM and in
the log page and then
merged in this block. Copy
50% of pages for GC

ctime

name

0101010

0101010

Hot data - frequently updated - is mixed with the cold data - rarely updated in a single block

Everytime the block is updated, we need to copy the cold data from the target block to the
new one

If the whole block was hot data (“all validated” at the same time”), easy - just erase

Grouping Data Together
Why group together? To group various write/update patterns together to
minimize the effort required to “prepare” a block for GC
● We cannot avoid not doing GC - but we can minimize the “prep” time

How to group data?
● Based on age: all pages with the “similar” creation and deletion time should be

group together
● Based on temperate: how (in)frequently a page is updated. Frequently updated

data together will expire together quickly, hence, easy to discard the whole block
and just erase (no live data)

● Mix of various other policies -- stream/namespace specific policies

72

FTL Design Exploration in Reconfigurable High-Performance SSD for
Server Applications, ICS 2009

73

Page-Mapped FTLs : Failure Analysis

74

LPA PPA Valid/Flags

0 0 V

100 1 “I”

101 2
V

400 3 V

100 4 V

Invalid, Written, Erased

a1 a2 a3 a4 Eb1 E E I I I I

0 1 2 3 4 5 6 7 8 9 10 11
 Block 0 Block 1 Block 2

W(0, a1), W(100,a2), W(101, a3), W(400, a4), W(100, b1)

Let’s consider when a failure happens
● Before 1 : no write has happened then
● Between 1 and 2 : (while writing p4) then no state has been changed, the last state remains
● Between 2 and 3 : new content has been written on the page 4, but no FTL entry, the last state remains
● Between 3 and 4 : new content written, new FTL entry, but the old is not invalidated, device can find out

which is the last written state with timestamp and that wins
● After 4 : everything committed, failure will have no effect

In any case - either you get the old content or the new one, the date is not lost

1

2
4

3

