Storage Systems (StoSys)
XM_0092

Lecture 3: FTL and GC

Animesh Trivedi
Autumn 2023, Period 1

VRIJE
UNIVERSITEIT
AR° AMSTERDAM

_—)

Syllabus outline

Flash Translation Layer (FTL) and Garbage Collection (GC) <:
NVM Block Storage File systems

NVM Block Storage Key-Value Stores

Emerging Byte-addressable Storage

Networked NVM Storage

Trends: Specialization and Programmability

Distributed Storage / Systems - |

Distributed Storage / Systems - ||

Emerging topics

S oOCWVwWoHNOWUAEW

For the next lecture: File System

Refresh your idea of a basic file system
files, directories, inodes, etc.

Direct
Data Blocks

Indirect

Incde Data Blocks

Information
: Blocks of

Pointers

Checkout the background reading section on
Canvas:

Double Indirect
Data Blocks

Blocks of
Pointers

40.1

40

File System Implementation

In this chapter, we introduce a simple file system implementation, known
as vsfs (the Very Simple File System). This file system is a simplified
version of a typical UNIX file system and thus serves to introduce some
of the basic on-disk structures, access methods, and various policies that
you will find in many file systems today.

The file system is pure unlike our develop of CPU and
memory virtualization, we will not be adding hardware features to make
some aspect of the file system work better (though we will want to pay at-
tention to device characteristics to make sure the file system works well).
Because of the great flexibility we have in building a file system, many
different ones have been built, literally from AFS (the Andrew File Sys-
tem) [H+88] to ZFS (Sun’s Zettabyte File System) [B07]. All of these file
systems have different data structures and do some things better or worse
than their peers. Thus, the way we will be learning about file systems is
through case studies: first, a simple file system (vsfs) in this chapter to
introduce most concepts, and then a series of studies of real file systems
to understand how they can differ in practice.

THE CRUX: HOW TO IMPLEMENT A SIMPLE FILE SYSTEM
How can we build a simple file system? What structures are needed
on the disk? What do they need to track? How are they accessed?

The Way To Think

To think about file systems, we usually suggest thinking about two
different aspects of them; if you understand both of these aspects, you
probably understand how the file system basically works.

The first is the data structures of the file system. In other words, what
types of on-disk structures are utilized by the file system to organize its
data and data? The first file sys we'll see (including vsfs below)
employ simple structures, like arrays of blocks or other objects, whereas

1

https://pages.cs.wisc.edu/~remzi/OSTEP/file-implementation.pdf

https://pages.cs.wisc.edu/~remzi/OSTEP/file-implementation.pdf

NAND Flash constraints

e Com pleX interna| geometry ‘ Block Size | Page Size ‘ OOB Size ‘ # Pages/Block
Small-block SLC 16KB 512 bytes 16 bytes 32

e Noin- o) lace u P dates Large-block SLC 128KB 2KB 64 bytes 64
Large-block MLC 512KB 4KB 128 bytes 128

o Anyin-place writes must do a

full block read-erase-write cycle

W
e Limited Program/Erase (P/E) cycles NG Nl
X X
e No mechanical latency e T
e Asymmetric read-write performance | >

o Reads from flash chips is typically faster than writes

e Sequential page writes/programming within a block

e Anything else? , ,
We continue to use terms page and blocks in the lectures

Recall - What is a Flash Translation Layer (FTL)

File Systems (ext4, FAT, NTFS)

_ Logical Page
read/write LBAs LPA(42) Address (LPA)

kernel SATA or SAS or NVMe Interface

| | | | | | | | |
hardware 0x0000 0x1000 0x2000 0x3000 0x4000
(if pages/sectors are 4kB in size)

Logical Page Addresses (LPA) is what a host software sees

e Ahost canissue a read/write operation on a particular LBA
e Based on the device, it can be 512 bytes (backward compatible - BIOS might not know
about 4kB pages) or some kB (to match the actual flash page size, 4 or 8 kB)

Recall - What is a Flash Translation Layer (FTL)

File Systems (ext4, FAT, NTFS)

read/write LBAs

LPA(42) @

Logical Page
Address (LPA)

kernel SATA or SAS or NVMe Interface /
hardware FTL Tgios“lr;tsiZn
\ Responsibility: keep track of all writes and
) mappings from LPA to PPA locations
Physical Page
Address (PPA)
0x3234
[99{29 [99{99 [99{99
Q Q Q Q Q Q Q Q Q Q Q Q
> > > > > > > > > > > >
D D) D D D D D D D D D
die die die die die die

Recall - What is a Flash Translation Layer (FTL)
What happens when the whole device is written once? Without Erase?

hardware FTL Acdiess

Translation

Responsibility: keep track of all writes and
mappings from LPA to PPA locations

Y N N NV A
Q Q Q Q Q Q Q Q Q Q Q Q
-] -] -] -] -] -] -] -] -] -] -] -]
(0] (0] D [p] [p] [p] [p] [p] [p] [p] [p] [p]

die die die die die die

Recall - What is a Flash Translation Layer (FTL)

What happens when the whole device is written once? Without Erase?

Garbage collection - move data around to prepare blocks for erase

Address .
hardware FTL Translation Garbage Collection
Y Y ‘l \ Y N
Q Q Q Q Q Q Q Q Q Q Q Q
>3 >3 >3 >3 >3 >3 >3 >3 >3 >3 >3 >3
D D M D D D D D D D D D
die die die die die die

What does GC do?

blocko blocke
If the whol
blgci\\//vvage :>
old mappings Erase
(in-place)

(a) (b)

IF the whole block (all pages) contains old data (shown as red) then the FTL can issue the erase
command on the block

e Block will be erased, and ready for re-programming
e Putin the pool of free blocks

Easy, right?

What does GC do?

What if page0
and page2
have data?

-

block®o

pageo
pagel
page2
page3

\
~..
RN

4. Erase the block?

2. Copy

pageo
pagel
page2
page3

e
a}
N
[

P

pageo
~ pagel
page2

page3

1. Find a free
block

FTL address
mapping logic

3. Update the address
mapping logic

What else should we consider?

10

How does GC find free blocks?

If a device is 8GB, and we wrote 8GB of data then where is the free space?

1

Concept: Over Provisioning (OP)

If a device is 8GB, and we wrote 8GB of data then where is the free space?

Answer: Over Provisioning, have more than what you report (or report less to user/OS)

Total flash blocks

User/0S usable

— >

Reserved for internal use

Same over provisioned blocks are also used to
manage bad blocks

So in essence, your 16 GB flash drive internally might
be 17, 18, or 20 GB flash drive. Sometimes, OP is
configurable, other times it is a trade-secret

More: better performance, more space for GC, expensive
Low: cheaper, but less margins for errors

Total capacity - user capacity
Over Provision =

User capacity

12

Concept: Write Amplification (WA)

OS kernel

Block layer — — — — — —

Device

(hardware)

What is happening here : copy-merge-write
cycle

1. The OS/kernel writes 4kB page
2. Internally device has to read 16kB and then
write out again 16kB after the modified page

| pagel |

data written to device
Write amplification = ---------------mm-mememeeem

data written by user

Here amplification is 4x. The exact value depends
upon the page/block size, how many free blocks,
FTL design, and many more...

A device can also expose smaller than the page
170 units like 512 bytes sectors

Concept: Wear Leveling

Different flash pages get written and programmed at a different rate
e How frequently they are written
e How frequently they are erased

As a result - their remaining age is different. For SLC chips, 100K is a typical number of

cycles available

e Page 0 and 2 are really healthy and not much written
e Page 1 has only half of its PE cycle remaining
e Page 3 has close to death — error rate will increase significantly, and block will be

marked bad

An ideal flash drive will try to spread the load evenly across all pages - wear leveling

14

Concepts: Steady State

When you have a fresh SSD (Fresh out of the Box, of FoB):
All pages/blocks are erased

All pages have full life time

GC has not done much work

FTL mappings all empty

If you benchmark your SDD in this state you get a very different performance results,
because

e No erasure has been done so far

e No running out of the blocks, need to look for new blocks

e No FTL lookups to update entries

In fact, of you get a FoB flash SSD - it might be the case that you get < 7 useconds for
reading pages and blocks - can you guess why?

15

Steady State: Impact

Performance States
Time (in minutes)
0.00 2000 4000 60.00 80.00 100,00 120,00 140.00
"FOB" State
A
Almost
A
/’"Transition“ State Order
§ o0 // Magnitude
16w Gap
4000 ~&-T1IME
"Burst" State "Steady" State
3000
2000
"Steady" State i)
...................... 1000. oo
0 3
0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00
Total Gigabytes Written (GB)

' 16
https://www.micron.com/-/media/client/global/documents/products/technical-marketing-brief/ssd performance states tech brief.pdf

https://www.micron.com/-/media/client/global/documents/products/technical-marketing-brief/ssd_performance_states_tech_brief.pdf

FTL Responsibilities

1. Address Translation
a. Map user visible pages to internal flash locations
2. Garbage Collection
a. Clear old blocks which do not have “live” data
3. Wear Leveling
a. Make sure not to “burn” one block and all blocks “age” uniformly
I. BTW - is this uniform aging a good idea?
4. Parallelism and Load Balancing
a. Use all parallel units for performance
5. Bad Block Management
a. Error corrections
b. When blocks are bad (they develop a high read/write error rate, mark them and don't use)

Also, work in a resource constrained environment with limited CPU power and
DRAM

17

Flash device setup

&

Systems interface

(e.g., USB, NVMe,

SCSI)

Flash Controller, FP
Embedded CPU - ARM ‘ FP . FP 7
Memory (SRAM) FP | |FP| |FP || FP
K/K e N i - \\ // e ¢ 7= Flone \\\ Block
‘ Block ‘ ‘ Block ‘ Block | Block ‘i\

L Register |) \I Registerb/

| Register | I Register |
& S %

o

2

>
Spare Area Mea\

The embedded CPU runs
the FTL logic
e Embedded FTL

Can use a bit of local
memory for staging data

What could be the simplest
design you can think of?

S
Little bit out-of-band data

18

Design 1: A directly mapped FTL
1l 1l

_ XXXXXXXXXX ®xabcdabcd Oxdeadbeef

block © block 1

A simple directly mapped FTL

e Trivial look up - fast and simple
e When read comes up for a LPA(x), read the PPA(x)
e When write comes up
o Ifthe pageisin “E” (erased) state then simple, write it out (write1, W1)
o Ifthe pageisin“l” (invalid) or “W" (written) state then the FTL needs to
erase the whole block, not just a single page

Design 1: A directly mapped FTL

@xabcdabcd

Oxdeadbeef

3. Erase the block PN

XXXXXXXXXXX

XXXXXXXXXX

@xabcdabcd

Oxdeadbeef

2. Update the new content

1. Copy the whole block

RN

7

©x1a2b3c4d

oxdeadbeef

3. Write the new block

So, what is the write
amplification factor here?

What are the challenges with
such directly mapped design?

20

Issues with the directly mapped FTL

1. Performance
a. Everyover-write to a page will result in a full copy-erase-write cycle
b. Very high write amplification factor
i. Directly proportional to the number of pages in a block

2. Wear-leveling
a. Not all pages are equally popular
b. Physical pages containing frequently written data (called HOT data) will be erased many times, thus
wearing them out
i. Every flash page has a finite number of P/E cycle (e.g., 100K for SLC)
ii. After exhausting their quotas, they will develop high error rates
c. One way to fix would be to tell the application to write evenly across the whole device, but applications
rarely write pages, file systems do

3. In-place updates
a. During a failure, the in SRAM content might be lost

Any advantage of such trivial-design?

21

Let’'s do a Bit Better

W1 W2 LPA | PPA \Valid/Flags
ﬂ ﬂ 0 ox3 I
1 ox0 E
ox2 0x3 1
............................ t....w................ " s s s s 2 0X1 w
_ XXXXXXXXXX @xabcdabcd Oxdeadbeef 3 ox3 W
ox0 ox1 ox2 ox3
block © block 1 Invalid, Written, Erased

Lets keep track of “mappings” in a table, and we can rearrange them when they needs to updated

Two types (same idea as the page tables in the CPU):
e Directly mapped - from logical to physical mappings - fast lookup (but failure prone)
e Inversely mapped - from physical to logical mappings, easy to reverse lookup, and construct
a mappings after failure

A device can use one or mix of these two. o=

Page-Mapped FTLs

Does tracking of LPA (arbitrary) — PPA (arbitrary)

LPA PPA |Valid/Flags

I I I I I I I I I I I I
) 1 2 3 4 5 6 7 8 9 10 11

Block © Block 1 Block 2

@ Erase the first two blocks
Invalid, Written, Erased

E E E E E E E E I I I I
) 1 2 3 4 5 6 7 8 9 10 11

Block © Block 1 Block 2

23

Page-Mapped FTLs

W(O, al), W(100,a2), W(101l, a3), W(400, ad)

al || a2 || a3 || a4 E E E E I I I I
0 1 2 3 4 5 6 7 8 9 10 11
Block © Block 1 Block 2

For Write

- As the new content comes in, we fill in the next pages we have around.

LPA

(2]
100
101
400

PPA |Valid/Flags

(2]
1
2
3

E ->V

E ->V

E ->V
E ->V

Invalid, Written, Erased

- Simple strategy (multiple policies possible regarding the selection of the next free page -

not all free pages are created equal ...any guesses?)
For read

- Lookup in the table the location of PPA and then issue a read to the flash chip

24

Page-Mapped FTLs : Overwriting

@ Invalid, Written, Erased
W(o, al), W(1e0,a2), W(1e1, a3), W(400, ad4), W(1leo, bl)
LPA PPA |Valid/Flags
R) 0 Y,
s @ 100 1 e
.) e ||
) 5 6 7 8 9 10 11 1e1 2 v
Block © Block 1 Block 2
400 3 Y,
@ 100 4 Y,

When a new content comes in, FTL marks the old location invalid, and choose a new page to
write the new content
e If the write was for a full page, then just write to the new location and update the table
e If the writes was less than the page then
o Read the old content, merge, and then write the merged paged to page 4
This is called out-of-place writes - also helps with the failure (as the old content is kept)

25

The good and bad about Page-level FTLs

The Good
e Most flexible, the best performance, least amount of WA as only a single page is merged

The Bad

e How much memory 1TB SSD need with 4kB pages?
o Let's assume at least 8 bytes entry per page
o 1TB/4kB = 256 million entries
o In total the size of the FTL table: ~2 GB (this much SRAM in your SSD)
o We are not even talking about space for other items yet

e So why cannot we put 2 GB of memory in SSDs?
o Complexity - form factor, electricity, circuitry, power
o Price, will get super expensive. Memory is expensive

Any idea what can be done here?

26

Block-Level Mapping

Instead of keeping track of per-page mapping, keep track of per-block mapping

Recall: A block is a collect of pages (10-100s of pages), it is the unit of erase

‘ ‘ Block Size ’ Page Size ‘ OOB Size ‘#Pages/Block ’

Small-block SLC 16KB 512 bytes 16 bytes 32
Large-block SLC 128KB 2KB 64 bytes 64
Large-block MLC 512KB 4KB 128 bytes 128

So by what factor, the size of the table will be decreased? Number of pages in a

block. So, let's do the calculation again:
e 1TB/128 KB x 8 bytes = 64 MB (still large, but manageable)
e SSDs can have 256-512kB blocks.

So this is it then?

Basic working: Reads and Writes

Assume a size of 100 bytes for each page, block size 400 bytes (4 pages/block) @

W(8000, al), W(400,a2), W(700 a3), W(8100, a4d)

/ \ M LBA | PBA Valid/Flags
— v @
E E E

8000) Y]
E E E E E E E E E
400 1 Y]
) 1 2 3 4 5 6 7 8 9 10 11
Block @ Block 1 Block 2 Invalid, Written, Erased
al || a4 || E E a2 || I I || a3 E E E E .
Nice, small FTL table
) 1 2 3 4 5 6 7 8 9 10 11
Block © Block 1 Block 2

Read : find the block level mapping,
e R(8100) comes in : block address (8000) + page offset (1)
e Lookup PBA of 8000, thisis 0
e read(0 + 1) for the content of LPA(8100)

Offset based address calculation < Important! 28

Challenges with the Block-Level Mappings

Assume a size of 100 bytes for each page, block size 400 bytes

W(8000, al), W(400,a2), W(700 a3), W(8100, a4), W(8000, bl), W(500, b2)
/
LBA PBA Valid/Flags
/ '
8000 0 \'
al || a4 E E a2 I I a3 E E E E
400 1 \Y
0 1 2 3 4 5 6 7 8 9 10 11
Block © Block 1 Block 2

Invalid, Written, Erased

Now what?
e What to do with W(8000)? This is an overwrite
e What to do with W(500)? This is a write in the middle of a block

The only thing we can do is to copy, merge, and write out the content of blocks 0 and 1 to a new
blocks (block 2, if no more available then erase blocks) — High Write Amplification factor

29

Challenges with the Block-Level Mappings

Assume a size of 100 bytes for each page, block size 400 bytes

W(8000, al), W(400,a2), W(700 a3), W(8100, ad4), W(8000, bl), W(500, b2)

LBA PBA Valid/Flags
8000 0 \'
al || a4 E E a2 I I a3 E E E E
400 1 \Y
0 1 2 3 4 5 6 7 8 9 10 11
Block © Block 1 Block 2

Invalid, Written, Erased

The key problem is that due to the offset calculation the location of a page is fixed inside
a block. We cannot just choose the next free page inside a block

e Expensive read-merge-erase-write cycle that we saw with the directly-mapped design

The second problem is dependency on the write pattern — Very important problem!

30

FTL Design Options so far

1. Page-level FTLs

a. Good mapping granularity
b. Any page can be mapped anywhere, less sensitive to workload patterns

c. But, large FTL size and need large SRAM in flash
2. Block-level FTLs

a. Small FTL size
b. High write amplification factor
c. Sensitive to workload patterns

There are variants to both page-, and block-level FTLs that helps to mitigate these issues to a
certain extend (we are skipping them here)

As usual, the question here is that if we can we do better?

31

Question: What is the most
important data structure you know?

(obviously, it can not be a factual answer, but what do we think?)

hint &

32

Log: A very powerful data structure

A sequential appending data structure ﬂ write

Write only at the end (tail)

Read from anywhere ﬂ ﬂ ﬂ ﬂ ﬂ

Many unique properties reads

No in-place updates, once written, the data becomes immutable

Serialized writing, one point of writing, the tail - either the write succeeds or not (atomicity)
Converts a random write to a sequential one «— very important

Parallel reading

Ordering of events (writes, transactions, or whatever)

Logging events (used in DBs, file systems) for failure recovery

We will see use of logs in FTLs, flash file system designs, distributed systems. One of
the most important data structures around, and it matches NAND flash properties!

33

Hybrid-Log FTLs

Divide the NAND flash device into two parts: Data and Log

Reads _
Writes

~
e Data blocks ﬁﬁ @

o Contains the stable data
o Mapped per-block (or zone) basis

e Log blocks
o All fresh writes go to log pages
o All filled in a strictly sequential pattern, from low page to higher pages
Mapped per-page basis

Data block Logs

At some point in time data is moved from the log to the data blocks

34

Working of a Hybrid-Log FTL - Simple Case

W(8000, al), W(8100,a2), W(8200, a3), W(8300, a4)

Data Block Mappings

LBA | PBA |Valid/Flags

T~)

E E E 1 E E
(7] 1 2 3 4 5 6 7 8 9 10 11
Block © Block 1 Block 2

Iog ——)

Log Page Mappings

A nice sequential pattern

e Block 1 is currently used as a log block which absorbs
incoming writes

e Oncefilled, then we can convert it to a “data” block and map

it as a “block-level” entry

LPA | PPA |Valid/Flags
8000 | 4 Vv
8001 5 Vv
8002 | 6 Vv
8003 | 7 Vv

35

Working of a Hybrid-Log FTL - Simple Case

W(8000, al), W(8100,a2), W(8200, a3), W(8300, a4)

E E E E al || a2 || a3 || a4 E E E E
(7] 1 2 3 4 5 6 7 8 9 10 11
Block © Block 1 Block 2

Data Block Mappings

LBA

PBA

Valid/Flags

8000

1

\"

Log Page Mappings

A nice sequential pattern

e Block 1 is currently treated as a log block which absorbs
incoming writes

e Oncefilled, then we can convert it to a “data” block and map
it as a “block-level” entry

This is called “Switch Merge”

LPA | PPA |Valid/Flags
8666 4 ¥
886t 5 ¥
8662 6 ¥
8663 # ¥

36

Working of a Hybrid-Log FTL - Updates to the Block

W(8000, bl), W(8100,b2) Data Block Mappings
LBA | PBA Valid/Flags
E|E|lE| E al||a2||a3||aa| |b1|b2|| E || E 8000) ¢t v
) 1 2 3 4 5 6 7 8 9 10 11
Block © Block 1 Block 2 Log Page Mappings
log LPA | PPA |Valid/Flags
New updates to already written blocks (but still in order) 8000 8 v
8100 | 9 v

e Pick up a new “log” block, say block 2
e Use page 8 and 9 to write new values

Read order: first check the Log, and then Data block. (fresher data is always in
the Log)

Then at some point we can merge the data block 1 and log block 2

Working of a Hybrid-Log FTL - Updates to the Block

i Data Block Mappings
Mark this block garbage Copy old data ppIng

~__ /\ LBA PBA Valid/Flags

EI|lE|l EI|lE XX a3 || a4 bl || b2 || a3 || a4 8000 |1 — 2 v

0 1 2 3 4 5 6 7 8 9 10 11
Block © Block 1 Block 2 Log Page Mappings
LPA | PPA |Valid/Flags
8666 @ 8 ¥
New updates to already written blocks (but still in order) 8108 | o v

e Pick up a new “log” block, say block 2
e Use page 8 and 9 to write new values

Then at some point we can merge the data block 1 and log block 2

This is called “Partial Merge”

Working of a Hybrid-Log FTL - Updates to the Block

W(8300,c1), W(2300,c2), W(7400,c3), W(8100,c4) Data Block Mappings
W LBA | PBA Valid/Flags
E||l E|| E|lE a1 || a2 || a3 |/ aa| [b1 b2 a3 | a2 8000) 2 v
(%] 1 2 3 4 5 6 7 8 9 10 11 .

Block @ Block 1 Block 2 Log Page Mappings
log LPA | PPA Valid/Flags
8300 | © Vv
Now completely random writes, take block 0 as the log block 2300 | 1 v
e Multiple writes might have come here 200 | 2 y
o Some for already valid entries (like 8000-8400 range)
o Some for a new writes, previously unmapped 8100 | 3 Vv

What happens now?

Working of a Hybrid-Log FTL - Random Writes

W(8300,cl), W(2300,c2), W(7400,c3), W(8100,c4) Data Block Mappings
LBA PBA Valid/Flags
cl || c2| c3| ca al || a2 || a3 || a4 bl || b2 || a3 || a4 8000 |2 — 1 v
0 1 2 3 4 5 6 7 8 9 18 11 .
Block © Block 1 Block 2 Log Page Mappings
Erase LPA | PPA Valid/Flags
clflc2| c3|ca E|E|E||E| [br] b2]la3] as see | @ v
2300 | 1 Vv
Merge
7400 | 2 Vv
- 8168 @ 3 ¥
cl || c2| c3 |l ca bl || c4 || a3 || c1 bl || b2 || a3 || a4

x c2 |l ¢3 X bl |l ca ll a3 || c1 X % Qx Convert from a log to data block 40

Working of a Hybrid-Log FTL - Random Writes

W(8300,c1), W(2300,c2), W(7400,c3), W(8100,c4)

cl

c2

c3

c4

al

a2

a3

a4

bl

b2

a3

a4

Data Block Mappings

LBA

PBA

Valid/Flags

8000

1

\"

1

2

3

4

This is called “Full Merge”
e Quite expensive
[e FTLs try to avoid as much as possible this state
C

- However, it is very difficult to predict
e When is the right time to merge
e Whatis the upcoming read/write pattern

10

11

Log Page Mappings

LPA | PPA |Valid/Flags
8366 © ¥
2300 1 Vv
7400 | 2 \Y
8166 3 ¥

c2 c3

X

bl

c4 a3

P4

cl

X4

Convert from a log to data block y

Choices between Data and Log Blocks

Each device can have multiple log blocks...
Which log blocks should track updates from which data blocks?

1. Block associative: each data block has its own private log block (1:1)
a. trivial updates and merging (only switch and partial, never full), but 2x capacity waste

2. Set associative: “n” log blocks serve writes for a set of consecutive “m” data blocks

(n:m)
a. Balance between the merge cost and flexibility

3. Fully associative: any log block can track updates from any data blocks (any:any)

a. most flexible, but need full merge
b. You will be implementing this for project milestones M2/M3

A device can implement a mix of any of these for various workload patterns

So far we have seen

e Read and write access patterns can affect the performance
e Random writes in the middle of a block are bad
o Leads to partial/full merge (cannot do just switch merge)
e Sequential, large writes are good - more opportunities for the switch merge

The FTL design and data caching (in SRAM) in devices are managed together
e Whenever a data is ready to be flushed out to NAND chips, corresponding FTL entries are also written

out (there is a FLUSH command in NVMe)
e One keeps a “working set” of hot data pages and FTL mappings in SRAM memory (like CPU TLBs)

Hence, locality matters with SSDs (did not we say random and sequential performance is the
same for SSDs?)

43

Also to consider

Are sequential reads also better than the random ones?

e Because even with the hybrid strategy the size of block-level data table,

and the page-level log table can be large
o They are stored on the flash and brought in demand to SRAM (caching)
o Asingle block-level entry covers “x” numbers of pages
o Hence, sequential/close LPAs have faster performance than the random ones

Freshly formatted device (no data) have a very low write/read latency (< 10 usec)
e The device knows there is no old data, write to the best location
e The device knows no data has been written so far, read with zeros
e Even with writes, most writes can be absorbed with on-device SRAM (needs flush)

To benchmark a device, always bring the device first in a steady state

44

A Typical Example (2016)

100000
80000

¥ 60000
o

40000

20000

Some drop in randomized read performance

Drop in random write performance
(but not as bad as HDD)

16“

5948

seq-reads rand-reads seq-writes rand-writes

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/VLDB2010-camera.pdf

45

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/VLDB2010-camera.pdf

Garbage Collection

So far we have implicitly discussed that

e Anew free block is always available
e Old marked blocks are somehow erased in the due time

How does this happen? The process of erasing blocks with old data to make

them suitable for new data is called Garbage Collection (GC)
e Ablock to be erased might contain some live and some expired/dead data

Terminology:
e Live data - which is the correct, freshest copy of the data
e Dead/expired - old, overwritten or deleted data, which is no longer needed
e Age of a block/page - representing the number of P/E cycle a page/block has gone through

(recall: there is a finite number of cycles)
46

Why bother about ,— _Flash Flash
the GC? "

Internal GC
I/0 traffic
300
::: BiuEEREEEEEERNER] 2 NEER A flash device has limited resources. If the embedded
225 CPU is occupied running the GC, how is it going to
5 200 i server a user request (interference)? Bad impact on
% ::f, worst case latencies (95 and 99 percentiles)
E 125
- :f, Hence, it is important to understand GC internals
25

and do “SSD-friendly” data management on flash

o 30 e 90 120 150 180 210 20 devices (see later, Unwritten Contracts)
Minutes

(2017) https://vpsmate.net/lies-damn-lies-ssd-benchmark-test-result1.html 47

https://vpsmate.net/lies-damn-lies-ssd-benchmark-test-result1.html

On our cluster

a

980 PRO PCle® 4.0 NvMe® sSD 1TB

hare your product

Genuine PCle 4.0 NVMe™ speed (up to 7,000/5,000MB/s for read/write speed)
Ideal for heavy computing, high resolution graphics and PC gaming
ing, compatible only with Playstation® 5. Must be installed with a

ink (sold separately). 300

—~1,400 MB/s

SAMSUNG §

storage
$14499 412950 $5999 438900 $6999 959
n
25068 A, 200
$7999 O
; —
Packaging &

1PACK 2 Pack (3% off) 3 Pack (5% off)
$5999 $10000 $11998 21002 $17997 $32002

%% Getitby Sep. 6 100

~200 MB/s

9
< e \] 2 980 PRO PCle® 4.0 NVMe® 55D 178 $5999
— ® In-Store Pickup: Best Buy Chelsea (23rd and 6th)
Get it toda)
® i, W, %% Delivery forZIP: 10001
M2(2280) PCle®4.0 ™= S 0 500 1000 1500
EQe FaCtor Interface 7000MB/s Seq, reads 5,000MB/s Seq. writes Total $59.99 TlIIle (S)

W $50.00

/ \

[Seq] 7,000 MB/s Reads and 5,000 MB/s Writes

https://www.samsung.com/us/computing/memory-storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-1tb-mz-v8p1t0b-am/
(2020) Diego Didona, Nikolas loannou, Radu Stoica, and Kornilios Kourtis. 2020. Toward a better understanding and evaluation of tree structures
on flash SSDs. Proc. VLDB Endow. 14, 3 (November 2020), 364-377. https://doi.org/10.14778/3430915.3430926

https://www.samsung.com/us/computing/memory-storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-1tb-mz-v8p1t0b-am/
https://doi.org/10.14778/3430915.3430926

A Typical GC Cycle

2. Pick a new block

1. Invoke GC . . .
Multiple design choices

3. Pick a victim block
——

How to find live-dead data?
When to invoke GC?

e . How to select the victim block(s)?
— 4. Copy, merge : ng to minimize interference
E— and update with the user/system 1/0?

How to stage data for better GC?
6. How to do high-performance GC?

AW =

e

4. Erase the victim block
add to the free list

49

Identifying “live” vs “dead” data pages

Internally FTL keep track of LPA to PPA mappings

e Everytime a new version of the page is written, the previous one can be marked as “dead”

Consider the case below

/tmp/application.log

E| E| E| E| |a1| a2 a3| as| [b1| b2 E | E
0 1 2 3 4 5 6 7 8 9 10 11
Block © Block 1 Block 2

In this case, various files which were created at the systems / file system and application level were
created, written to, and then deleted. How does the FTL know about blocks mapped to these files?
Technically they contain “dead” data.

|deas? 50

TRIM Command (or Deallocate in NVMe)

1. delete(/tmp/application.log)
2. TRIM(start LPA:4, count:6)

E| E| E| E| |a1|a2| a3| as| [b1| b2 E | E
0 1 2 3 4 5 6 7 8 9 10 11
Block © Block 1 Block 2

TRIM: a new command (apart from read/write) for SSDs
e tellsan SSD if a range of page addresses are no longer needed
e remove the associated FTL entries internally within the SSD
e mark those pages dead (to be garbage collected)
e can trigger GC to reclaim those pages
51

When to invoke GC?

As quickly as possible
e interferences with the user I/0 request
e contention on shared data and control channels
e useless work if the data written was temporary

As late as possible
e might run out of free blocks
e difficult to handle bursty data (if not free block available)

Typically, during the idle periods
e check the command queue and model when will be the next free window for GC
e when run out of block, then the FTL MUST run the GC (no other option)
e we cannot predict the future write-patterns - or can we? (ML, anyone?)

52

How to Select a Target/Victim Block

e Random: a good and simple strategy if writing load is uniform across the
whole device (how often is this the case?)
e FIFO, RR: pick the last block that was erased and use it

o Advantage: uniform wear leveling across all blocks
o THINK: do you have a choice when using a LOG?

Is this good enough? Any other ideas? Or what other criterias should we consider?

53

Which Block is Preferred?

(a)

(b)

Block (a) contains 34 dead pages
Block (b) contains % dead pages

Block (a) gives maximum free space for minimum amount of data
copies, also reduces write amplification. Pick the one with least
amount of live data. Greedy approach.

What if the Block (a) was an old block, close to 90K PE cycles (out of
100K) and Block (b) was at 50K? What is a better option now?

Some sort of cost-benefit Trade-off (CBT)
e Costis a function of (amount of work, age, SRAM needed?)
e Benefitis amount of free space reclaimed (and the aging, etc. etc.)

54

How to Select a Target/Victim Block

Random: a good and simple strategy if writing load is uniform across the
whole device (how often is this the case?)
FIFO, RR: pick the last block that was erased and use it

o Advantage: uniform wear leveling across all blocks
o Problem: what if the last block contained all “live” data?

Greedy: Pick the block which has the least amount of “live” data
o Advantage: minimum amount of live data copy, maximum free space reclamation
o Challenge: what about wear leveling?

Cost-Benefit: various strategies that mix (i) live data amount; (ii) age of
the block; (iii) amount of memory required for state keeping;

As you can see there is not strategy that wins all. Modern device FTLs use a
combinations of these strategies

55

At this point

1. FTL seems complicated, and there is no single win strategy for all
a. Hidden from the systems and applications (no SSD API to talk to it)

2. GCseems complicated and there is no single win strategy for all
a. Hidden from the systems and applications (no API to talk to it)

3. Both of them are resource heavy

a. Need CPU power
b. Need DRAM/SRAM on board

4. Alarge design space with multiple objectives
a. Performance, very much workload dependent
b. Wear-leveling, minimize interference, binning and grouping of data

Is there is a better way to tackle these challenges ...

56

Host-Based FTLs

Implement all the complex logic on host, why?

Host has a powerful CPUs (multicore Intel CPUs)

Host has a lot of DRAM (10-100s of GB)

All GC and user traffic is visible to the host FTL, no hidden state

Application-specific customization possible, no need to restrict yourself on the Block interface

Examples: OpenChannel SSDs and LightNVM infrastructure, Baidu’s Software-defined
Flash, and now NVMe Zone namespace (ZNS) devices

e ZNS devices do not have complete FTL, but the control over the GC at the host
e Another emerging standard is NVMe Flexible Data Placement (FDP)
o https://nvmexpress.org/nvmeflexible-data-placement-fdp-blog/

On device FTLs are called “Embedded FTLs"” vs “Host-based FTLs" 57

https://nvmexpress.org/nvmeflexible-data-placement-fdp-blog/

Baidu’s Software Defined Flash

SDF: Software-Defined Flash
for Web-Scale Internet Storage Systems

Jian Ouyang Shiding Lin Song Jiang * Zhenyu Hou Yong Wang
Baidu, Inc. Peking University and Yuanzheng Wang
{ouyangjian, linshiding}@baidu.com Wayne State University Baidu, Inc.
sjiang@wayne.edu {houzhenyu, wangyong03,

Abstract

In the last several years hundreds of thousands of SSDs have
been deployed in the data centers of Baidu, China's largest
Internet search company. Currently only 40% or less of the
raw bandwidth of the flash memory in the SSDs is delivered
by the storage system to the applications. Moreover, because
of space over-provisioning in the SSD to accommodate non-
sequential or random writes, and additionally, parity coding
across flash channels, typically only 50-70% of the raw
capacity of a commodity SSD can be used for user data.
Given the large scale of Baidu's data center. making the most

wangyuanzheng}@baidu.com

increases I/O bandwidth by 300% and reduces per-GB hard-
ware cost by 50% on average compared with the commodity-
SSD-based system used at Baidu.

Categories and Subject Descriptors B.3.2 [Memory Struc-
tures]: Design Styles - mass storage (e.g., magnetic, optical,
RAID)

Keywords Solid-State Drive (SSD), Flash Memory. Data
Center.

1. Introduction

effective use of its SSDs is of great i S,
we seek to maximize both bandwidth and usable capacity.

To achieve this goal we propose software-defined flash

(SDF), a hardware/software co-designed storage system to

i exploit the istics of flash
memory in the context of our workloads. SDF exposes in-
dividual flash channels to the host software and eliminates
space over-provisioning. The host software, given direct ac-
cess to the raw flash channels of the SSD. can effectively
organize its data and schedule its data access to better real-
ize the SSD's raw performance potential.

Currently more than 3000 SDFs have been deployed in
Baidu's storage system that supports its web page and im-
age repository services. Our measurements show that SDF
can deliver approximately 95% of the raw flash bandwidth
and provide 99% of the flash capacity for user data. SDF

“This work was performed during his visiting professorship at Peking
University.

To il ing demand on I/O perfor-
mance in Internet data centers, flash-memory-based solid-
state drives (SSDs) have been widely deployed for their
high throughput and low latency. Baidu was one of the first
large-scale Internet companies to widely adopt SSDs in their
storage infrastructures and has installed more than 300,000
SSDs in its production system over the last seven years to
support I/O requests from various sources including index-
ing services, online/offline key-value storage, table storage,
an advertisement system, mySQL databases. and a content
delivery network. Today SSDs are widely used in data cen-
ters, ivering one order of magni greater through-
put, and two orders of magnitude greater input/output op-
erations per second (IOPS), than conventional hard disks.
Given SSD’s much higher acquisition cost per unit capac-
ity. achieving its full performance and storage potential is of
particular importance, but we have determined that both raw
bandwidth and raw storage capacity of commodity SSDs, in
a range of ies, are sub ially under-

58

Software-Defined Flash Architecture

/dev/sda

/dev/sda0 ~ /dev/sdaN

User Space

User Space

SSD Controller SSD Ctrl| [SSD Ctrl SSD Ctrl
Flash Flash Flash Flash Flash Flash
CH_O CH_1| ** ||CH_N CH_O CH_1| * ||CH_N

] J]]] 1

Conventional SSD

SDF

Full control over 1/0 Stack (exposed parallelism)

VFS

File System ” Block Device I

Generic Block Layer

10 Scheduler

——31Dd—

SCSI Mid-layer

I
l

SATA and SAS Translation |

Low Level Device Driver

Conventional SSD

Direct 10

(a)

Page
Cache

Buffered 10

Kernel Space I0CTRL

PCIE Driver

SDF

(b)

Full control over GC (reduce interference with user 1/0)
Full control over device provisioning, can be customized for workloads
Predictable Performance when to do read/write/erase

59

Performance Example

SDF

Baidu SDF, 8MB Erases and Writes

T T T
o O O
o O O

I T T

o O O

o O O

A 0 ~N O N <
(sw)Aduaien

Huawei Gen3, 8*44IVIB Writes

100 -

T T

o o
o O
™M N

[z61

061

€81

9L1
691

L 291

SST
81

- TrT

VET
LTl

- 0tT

€11
90T

" 66

6
S8

" 8L

TL
9

s

0s

| EV

9¢
6¢C

L CC

ST

6T

06T
€81
9.1
691
L C91
SST
8v1l

- It

VET
Lzt
- 0C1
€T1T
90T

" 66

43
S8
8L
TL
9
LS
0S
K37
9¢
67
.72
ST

4500 -

(sw)Aousreq

EEEEE

M N N

o

60

Time (# of Writes)

Time (# of Writes)

The Idea itself is Not New

Fusion-10 (and other companies, Violin Memory) did it back in 2007, run FTL on the
host-CPU

Multiple embedded systems do the same, FTL runs on their embedded CPU which
is running the application

Scale and deployment of execution is unique in the Baidu's case, but many
cloud-scale vendors do that now

Pretty cool and influential work

- The idea of opening up flash is used in multiple projects, Open-Channel SSDs,
streaming API, Application-managed flash, and now Zone Namespace (ZNS)
devices 61

Design of FTL is a very large field

Chip 0 Chip c-1

What we are not covering yet

[Plane p-1

Blockm || Superblock m

1. How to extract parallelism... (allocation)
a. For example, if reading 1MB from a device,
it would be nice if its blocks and pages were
distributed across parallel dies for performance
i. Striping: horizontal, vertical, n-dimensionals

| ||[Pagen]|| Superpagen

Block b-1
%

4 Plane p-1 [[5] 3]

T T
Channel 0 Channel h-1

2. Wear-leveling
a. Static vs Dynamic wear leveling
b. Keeping track of block ages
c. Keeping track of hot and cold data and separate them into various logical “age bins”

3. Failure and bad/corrupted block management
a. ECCchecks and corrections
b. Maintenance of bad block maps

c. See, Errors in Flash-Memory-Based Solid-State Drives: Analysis, Mitigation, and Recovery,
https://arxiv.org/abs/1711.11427

62

https://arxiv.org/abs/1711.11427

Further reading

i»

Fantastic SSD Internals and How to
Learn and Use Them

Nangqingin Li Mingzhe Hao Huaicheng Li
University of Chicago and University of Chicago University of Chicago and
Princeton University Carnegie Mellon University
Xing Lin Tim Emami Haryadi S. Gunawi
NetApp NetApp University of Chicago
ABSTRACT 1 INTRODUCTION

Solid

‘This work presents (a) Queenic, an level tool that
can automatically learn 10 internal properties of block-level
SSDs, (b) Kelpic, the learning and analysis results of run-
ning Queenie on 21 different SSD models from 7 major SSD
vendors, and (¢) Newt, a set of storage performance optimiza-
tion examples that use the learned properties. By bringing
numerous observations and unique findings, this work ex-
poses substantial improvement spaces for both SSD users
and vendors, enlightening possibilities of unleashing more
SSD performance potential and highlighting the necessity
of further exploring SSD internals.

CCS CONCEPTS
« General and reference — Empirical studies; Measure-
ment; « Information systems — Flash memory.
KEYWORDS

lid-State Drive, c

ACM Reference Format:

Nangingin Li, Mingzhe Hao, Huaicheng Li, Xing Lin, Tim Emami,
and Haryadi S. Gunawi. 2022. Fantastic SSD Internals and How
to Learn and Use Them. In The 15th ACM International Systems
and Storage Conference (SYSTOR '22), June 1315, 2022, Haifa, Israel.
ACM, New York, NY, USA, 13 pages. https://doi org/10.145/3534056.
3534940

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post an servers or to redistribute to lists. requires prior specific
d/or a fee. Request from permissi

SYSTOR '22, June 13~15, 2022, Haifa. lsrael

© 2022 Copyright held by the ownes/author(s). Publication rights licensed.
to ACM.

ACM ISBN 978-1-4503-9380-5/22/06....$15.00

hitps:/doi org/10.1145/3534056 3534940

Drives (SSDs) are a cornerstone of modern stor-
age systems because of their competitive performance, relia-
bility, capacity, and cost [2, 13, 19, 33, 41, 46). However, while
fulfilling user’s increasing demands on storage, modern SSDs
also bring their own challenges: it is difficult to optimally
utilize them as most of them show up as black-box devices,
with internal complexities such as FTL mapping, write buffer
management, and garbage collection mechanisms, hidden
and intangible from their users (21, 23, 26, 29, 49, 50).

These complexities, unfortunately, can bring non-
negligible side-cflects, with i i as
one of the notorious ramifications. For example, write buffer
flush can contend with reads on NAND resources and bring
long latency tails [10, 19, 39); reads with inappropriate align-
ment can take extra overhead to process as SSDs apply mini-
mal unit of access (31, 32]; some SSDs are designed for certain
purposes, and when used inappropriately, can dramatically
downgrade the overall system performance [5, 30

Motivated to resolve these negative impacts, multiple
pieces of prior work (12, 28, 30-32] try to extract crucial SSD
properties and propose coherent designs based on the ob-
servations. They have reasonably argued that probing SSDs
can help build more effective solutions and bring significant
performance improvement.

Based on these gains, we further ask: is there more knowl-
edge hidden in modern SSDs, waiting to be learned and uti-
lized, especially as modern SSDs have evolved rapidly over
the past decade? We found that there are many questions
unanswered in prior work. Do modern SSDs have favorable
sizes on reads and punish those that do not comply (§4.1,
§5.1)? D that were preval SSDs previously
such as read buffer, still exist in recent SSD models (§4.5)?
Do large-capacity SSDs, which are very common nowadays,
have write buffers of appropriate sizes (§4.2) and the capa-
bility to handle highly-parallel writes (§4.4)? Do SSDs apply
hybrid (externally and internally triggered) buffer flush poli-
cies (§4.3) that can be exploited for less contention and better
performance (§5.2)? Do SSDs really perform better when they
face less “stress” (§4.6)?

Py Py P3 Py Ps Pg P7 Pg Py P1o
PgSz PgType ChukSz StripeW Layout ReadC RBuf WBuf WrPra FluWin

) 4K MLCyy 24 4K 124 16X8 v — 40.25Mp 8 50ms
Nsooc;s 4K MLC4L 2H 4K 64 4x16 v — 2M 1 4ms
NiogGS 4K MLCar 25 4K 32 16x2 v — M 1 2ms
Nopl 4K TLC 64K 186 12x16 X = 11.5M 4 200ms
Ny 671 4K MLC1r 14 128K 122 32x4 v — 11.5M 2 10ms
Nirl 4K TLC 256K 2 X = 11M, 2 3ms
NigrW 4K MLCipin 64K 124 16x8 X = NB+P 4 -
NigrM 4K MLCyig 128K 128 168 v = 15M 4 0
A1erP 4K TLC 16K 247 16x16 v - NB+P 4 —
AgsogPs 4K MLCarag 4K 64 32x2 v = NB+P 4 =
AggogPr 4K MLCipix 16K 200 20x10 v — 11.5Mp| 406M 4X 200ms | 2.55
AsoogP 8K MLCipLim 32K 128 16x8 v/ 16M 2M|512M 4 0
AggocG 4K MLCipix 64K 30 8x4 v = 3.75M 2 30ms
AgoogH 8K SLC 8K 253 16x16 — 20M|1265M" 1 o
T480GS 4K MLCar. an 4K 16 8x2 v = 2M | 256M 1 10ms | 5s
TooogS 8K SLC 8K 64 8x8 v - M 1 35ms
T128GS 4K MLCar. a1 4K 32 16x2 v = M il 2ms
TioS 8K SLC 8K 8 8xl v — 512K 1 40ms
TeaGS 16K SLC o 1 1x1 v = 4M 2 ©
Teagl 4K SLC 4K 20 10x2 v/ — 10Mp|810M 1 300ms | oo
TooogM 4K SLC 4K 128 8x16 v = 64M 1 1s

Nangingin Li, Mingzhe Hao, Huaicheng Li, Xing Lin, Tim Emami, and Haryadi S.

Gunawi. 2022. Fantastic SSD internals and how to learn and use them. In
Proceedings of the 15th ACM International Conference on Systems and Storage
(SYSTOR '22). Association for Computing Machinery, New York, NY, USA, 72-84.
https://doi.org/10.1145/3534056.3534940

63

https://doi.org/10.1145/3534056.3534940

Based on all these details : Unwritten Contract

The Unwritten Contract of Solid State Drives
Jun He Sudarsun Kannan Andrea C. Arpaci-Dusseau Remzi H. Arpaci-Dusseau

Department of Computer Sciences, University of Wisconsin—-Madison

Abstract

We perform a detailed vertical analysis of application perfor-
mance atop a range of modern file systems and SSD FTLs.
We formalize the “unwritten contract™ that clients of SSDs
should follow to obtain high performance, and conduct our
analysis to uncover application and file system designs that
violate the contract. Our analysis, which utilizes a highly
detailed SSD simulation underneath traces taken from real
workloads and file systems. provides insight into how to bet-
ter construct applications, file systems, and FTLs to realize
robust and sustainable performance.

as hard drives, how higher layers utilize said interface can
greatly affect overall throughput and latency.

Our first contribution is to formalize the “unwritten con-
tract” between file systems and SSDs, detailing how up-
per layers must treat SSDs to extract the highest instan-
taneous and long-term performance. Our work here is in-
spired by Schlosser and Ganger's unwritten contract for hard
drives [82]. which includes three rules that must be tacitly
followed in order to achieve high performance on Hard Disk
Drives (HDDs): similar rules have been suggested for SMR
(Shingled Magnetic Recording) drives [46].

xxr . P Vet o

64

What are Unwritten Contract

The Written contract is the APl from the device, essential to get the basic
function working

e Read, Write, Flush, Trim <« The essentials
The Unwritten contract is for performance

e Fluctuation in the performance due to the internal SSD complexity that
you have seen so far
e Multi-level details to take into consideration

How can you develop your application for the best performance?

65

Unwritten Contract

1. Request Scale
a. Leverage parallelism
2. Locality
a. Respect locality with the FTL mappings
3. Align Sequentially
a. Access aligned data to help the FTL
4. Group by Death Time

a. Givesthe best chance to
GC for clean up

5. Uniform Data Lifetime

Rule Impact Metric
BoiediEhais 7.2%,18% Read bandwidth
o 10x,4x Write bandwidth
o 1.6 Average response time
BoEa by 2, 2% Average response time
) s 2.5% Execution time
Aligned Sequentiality 2 dx e
4.8% Write bandwidth
Grouping by Death Time 1.6 Throughput (ops/sec)
1.8x Erasure count
Uniform Data Lifetime 1.6x Write latency

a. Group data with the same lifetime to uniformly wear out flash pages

66

What You Should Know from this Lecture

1. Concepts: wear-leveling, over provisioning, write amplification, steady
state
2. Three basic FTL designs: page-level, block-level, and hybrid

a. Their advantages and disadvantages

3. GCdesign choices

a. Trim command
b. Various victim block selection algorithms

4, Embedded vs host FTL design options
a. Advantages of host-based FTL designs

5. How do these design choices influence the performance of an SSD

67

Further Reading

[Important] Chapter 44, Flash-based SSDs, http://pages.cs.wisc.edu/~remzi/OSTEP/file-ssd.pdf
An Evaluation of Different Page Allocation Strategies on High-Speed SSDs,
https://www.usenix.org/system/files/conference/hotstorage12/hotstorage2-final55.pdf

e Wear Unleveling: Improving NAND Flash Lifetime by Balancing Page Endurance,
https://www.usenix.org/conference/fast14/technical-sessions/presentation/jimenez

e Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2017. The Unwritten Contract of Solid State Drives.
In Proceedings of the 12th ACM EuroSys, 2017.
LightNVM: The Linux Open-Channel SSD Subsystem, https://www.usenix.org/system/files/conference/fast17/fast17-bjorling.pdf
Eran Gal and Sivan Toledo. 2005. Algorithms and data structures for flash memories. ACM Comput. Surv. 37, 2 (June 2005), 138-163.
Dongzhe Ma, Jianhua Feng, and Guoliang Li. 2014. A survey of address translation technologies for flash memories. ACM Computing
Surveys 46, 3, Article 36 (January 2014), 39 pages.
Luc Bouganim, Bjorn Por Jonsson, Philippe Bonnet: uFLIP: Understanding Flash 10 Patterns. CIDR 2009.
Andrew Birrell, Michael Isard, Chuck Thacker, and Ted Wobber. 2007. A design for high-performance flash disks. SIGOPS Operating
Systems Reviews. 41, 2 (April 2007), 88-93.

e Feng Chen, Tian Luo, and Xiaodong Zhang. 2011. CAFTL: a content-aware flash translation layer enhancing the lifespan of flash
memory based solid state drives. In Proceedings of the 9th USENIX FAST, 2011.

e Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. 2009. DFTL: a flash translation layer employing demand-based selective
caching of page-level address mappings. In Proceedings of the 14th ACM ASPLOS, 2009.

e Ji-Yong Shin, Zeng-Lin Xia, Ning-Yi Xu, Rui Gao, Xiong-Fei Cai, Seungryoul Maeng, and Feng-Hsiung Hsu. 2009. FTL design exploration in
reconfigurable high-performance SSD for server applications. In Proceedings of the 23rd ACM ICS 2009.

http://pages.cs.wisc.edu/~remzi/OSTEP/file-ssd.pdf
https://www.usenix.org/system/files/conference/hotstorage12/hotstorage12-final55.pdf
https://www.usenix.org/conference/fast14/technical-sessions/presentation/jimenez
https://www.usenix.org/system/files/conference/fast17/fast17-bjorling.pdf

Backup Slides

69

Static vs. Dynamic Wear Leveling

W(8000, cl-c4), W(8000, dl-d4), W(8000, el-e4)

@ LBA | PBA Valid/Flags
8000 (%) \Y
bl || b2 || b3 || b4d al || a2 || a3 || a4 E E E E 400 1 v
0 1 2 3 4 5 6 7 8 9 10 11
Block © Block 1 Block 2
LBA | PBA Valid/Flags
E E E E al a2 a3 al cl c2 c3 c4
8000 2 \Y;
dl || d2 || d3 || d4 al || a2 || a3 || a4 E E E E 400 1 v

Dynamic wear-leveling: In this example, block 0 and 2 are written continuously, thus, also aged
continuously

But what about block 1? The FTL did not change the block location 1 because it was never updated.

Static Wear-leveling: Cycle around all the blocks (even, the cold, static blocks) too. Time to time, FTL 20
will read the old blocks and just move them around for even wear-leveling

Impact of Workload Patterns

A new write, that is
buffered in SRAM and in
the log page and then

. name merged in this block. Copy
name Metadata of the file

: 50% of pages for GC
ctime :> ctime
oe1010 eLotote

Content of the file 0101010

name

ctime

Hot data - frequently updated - is mixed with the cold data - rarely updated in a single block

Everytime the block is updated, we need to copy the cold data from the target block to the
new one

If the whole block was hot data (“all validated” at the same time”), easy - just erase 71

Grouping Data Together

Why group together? To group various write/update patterns together to
minimize the effort required to “prepare” a block for GC
e We cannot avoid not doing GC - but we can minimize the “prep” time

How to group data?
e Based on age: all pages with the “similar” creation and deletion time should be
group together
e Based on temperate: how (in)frequently a page is updated. Frequently updated

data together will expire together quickly, hence, easy to discard the whole block
and just erase (no live data)

e Mix of various other policies -- stream/namespace specific policies

72

FTL Design Exploration in Reconfigurable High-Performance SSD for
Server Applications, ICS 2009

FTL design
choices

Best conditions to use

Pros

Cons

Static allocation
(b, c, d)

Dominant sequential 10 re-
quests

High parallelism, Even distribu-
tion of requests

Less benefit for random 10, un-
controllable wear level among
flash modules

Static allocation
(a, e, f, g)

No benefit for most cases

N.A.

Bad figures for most of evalua-
tion metrics

Page striping unit

High IO rate

Utilizes many flash modules in
parallel

Small advantage from data local-
ity increasing cleaning operation

Block striping
unit

Low IO rate

Small number of cleaning opera-
tions

Uneven request distribution in-
creasing response time

Dynamic alloca-
tion with chip
allocation pool

Similar ratio of random and
sequential IO

Parallelism for both sequential
and random IOs, moderate per-
formance for most cases

Potential for data and request
skew

Dynamic alloca-
tion with SSD
allocation pool

Dominant random IO re-
quests

High parallelism for random IO,
Even distribution of random re-
quests

Potential for data and request
skew, relatively worse perfor-
mance for sequential I0s

Load balancing

Hot/Cold Separa-

tion

Skewed IO request to few
flash modules

Even utilization of flash modules

Increased page migration

Evenly distributed 10 re-
quest and hot/cold data

Less erase, and page copying

Misclassification of data de-
grades performance

Large wear level-
ing cluster

Unevenly distributed 10 and
erase requests, requirements
for even wear level through-

out SSD

Even wear level throughout large
cluster

Larger overhead and response
time

Small wear level-
ing cluster

Evenly distributed 10 and
erase requests, Requirements
for small IO response time

Small overhead for wear leveling

Potential for uneven wear level
among flash modules

Table 6: Summary of FTL exploration and tradeoffs

73

Page-Mapped FTLs : Failure Analysis

@ Invalid, Written, Erased

W(B, al), W(100,a2), W(101, a3), W(400, a4), W(100, bl)

LPA PPA |Valid/Flags

@ /\ 0 0 v
g

@ 100 3
a BEernney o :
8 9 10 11

0 1 2 3 4 5 6 7 101 2

Block @ Block 1 Block 2
oc oc 400 3 v

@ 100 4 v

Let's consider when a failure happens
e Before1 : no write has happened then
e Between 1 and 2: (while writing p4) then no state has been changed, the last state remains
e Between 2 and 3 : new content has been written on the page 4, but no FTL entry, the last state remains
e Between 3 and 4 : new content written, new FTL entry, but the old is not invalidated, device can find out
which is the last written state with timestamp and that wins
o After4 : everything committed, failure will have no effect
In any case - either you get the old content or the new one, the date is not lost

74

