
1

Storage Systems (StoSys)
XM_0092

Lecture 2: Host Interfacing and
Software implications

Animesh Trivedi
Autumn 2023, Period 1

Syllabus outline
1. Welcome and introduction to NVM (today)
2. Host interfacing and software implications
3. Flash Translation Layer (FTL) and Garbage Collection (GC)
4. NVM Block Storage File systems
5. NVM Block Storage Key-Value Stores
6. Emerging Byte-addressable Storage
7. Networked NVM Storage
8. Trends: Specialization and Programmability
9. Distributed Storage / Systems - I

10. Distributed Storage / Systems - II
11. Emerging Topics

2

Ramifications of fast flash storage
First flash storage devices in mainstream computing
showed up in mid-2000s (2005-2006-2007)

● Recall that flash NAND/NOR are already used extensively in
embedded systems, ROM/BIOS, etc.

Typically (and often) a new technology is packed
behind a known systems interface

First generation of flash devices were packaged
as a fast “HDD” running with compatible SAS/SATA
HDD protocols for data transfers

3https://www.enterprisestorageforum.com/storage-hardware/ssd-vs-hdd.html

https://www.enterprisestorageforum.com/storage-hardware/ssd-vs-hdd.html

Classical HDD setup: AHCI

4

Processor Socket
Complex

(memory controller,
caches, cores, etc.)

Advanced Host
Controller
Interface

AHCIPCIe

SATA

AHCI is implemented in motherboards

Single point to implement the protocol translation between PCIe and SATA

Support multiple devices types (HDD, optical drives, floppy drives?)

AHCI challenges

Single bottleneck for performance, SATA speeds (or SAS) were just not fast enough

5 2003 2004 ~2009 2013

SATA 1.0
(1.5 Gbps, ~150 MB/s)
 SATA 2.0 SAS 2.0 SAS 3.0
 (3 Gbps, ~300 MB/s) (6Gbps) (12 Gbps)
 SATA 3.0
 (6 Gbps, ~600 MB/s)

SAS-4: 22.5 Gbit/s called
"24G" standardized in
2017

Processor Socket
Complex

(memory controller,
caches, cores, etc.)

Advanced Host
Controller
Interface

AHCIPCIe

SATA

Challenges with the storage protocols
Beyond just the hardware speeds

● SAS/SATA protocols were too slow to evolve, took multi years for one
standard to get to the next

○ See the time between different version 4-5 years, it has improved later

● The AHCI centralized complex became (hardware) performance
bottleneck as I/O requests have an intermediary stop

○ Low latency
○ High IOPS
○ Complexity of implementation and revision with new generation of flash drives
○ Could take up to 6 microseconds on the wire

6(2012) https://www.snia.org/sites/default/education/tutorials/2012/fall/solid/AnilVasudeva_NVMe_NextGen_SSD%20Interface-r1-nc1.pdf

https://www.snia.org/sites/default/education/tutorials/2012/fall/solid/AnilVasudeva_NVMe_NextGen_SSD%20Interface-r1-nc1.pdf

Basic operations

7
Section 4.2., A Comparison of NVMe and AHCI https://sata-io.org/system/files/member-downloads/NVMe%20and%20AHCI_%20_long_.pdf

https://sata-io.org/system/files/member-downloads/NVMe%20and%20AHCI_%20_long_.pdf

Linux storage software stack
components

8

Applications

VFS

ext4 XFS Brtfs

Block Layer

SCSI mid-layer

SCSCI low-level drivers

https://www.thomas-krenn.com/en/wiki/Linux_Storage_Stack_Diagram
High Performance Solid State Storage Under Linux, https://storageconference.us/2010/Papers/MSST/Seppanen.pdf, MSST 2010

https://www.thomas-krenn.com/en/wiki/Linux_Storage_Stack_Diagram#Diagram_for_Linux_Kernel_6.2
https://storageconference.us/2010/Papers/MSST/Seppanen.pdf

High software overheads

9

(2010) timeframe

● It takes ~20,000 instructions to issue and
complete a 4kB I/O request in Linux

● Total time = 23 μsec

In a setup with an experimental device (Moneta)

● ~2 μsec is for the storage hardware, PCM
● 13 μsec out of 23 μsec is software overhead (62%)
● For RAID-HDD this is less than 1%

Moneta: A High-performance Storage Array Architecture for Next-generation, Non-volatile Memories,
http://mesl.ucsd.edu/pubs/Caulfield_MICRO10.pdf , 2010.

http://mesl.ucsd.edu/pubs/Caulfield_MICRO10.pdf

To summarize
2008-2009-2010 timeframe

● Fast high-bandwidth flash SSDs were hitting the market

However, their performance was bottlenecked by the

● Hardware overheads: HDD-oriented AHCI interfaces and SAS/SATA
protocols

● Software overheads: HDD-oriented software design decisions made for
slow storage devices (i.e., HDDs) that needed revision

A radically new way of integrating new emerging storage was needed….

10

Connect NVM storage directly to the PCIe bus

11

Processor Socket
Complex
(memory

controller, caches,
cores, etc.)

Advanced Host
Controller
Interface

AHCIPCIe

SATA

Processor Socket
Complex
(memory

controller, caches,
cores, etc.)

PCIe

Attach them directly on the PCIe bus, why?
● No HBA, directly to the CPU
● Scalable port width (1-16x lanes)
● High bandwidth/lane (~500MB/lane for

v2.0, today 4.0 has 2GB/lane)
● Standard bus, supported by all
● Large configuration/data space
● Power efficient …

Multiple competitive standards and proprietary solutions

12https://nvmexpress.org/wp-content/uploads/2013-FMS-NVMe-Track.pdf
https://www.networkcomputing.com/careers-and-certifications/fusion-io-cracks-1m-iops-ssds

Image yourself in 2009
● you spent all your life optimizing to squeeze

out a bit of performance from storage
● A HDD does ~100s of random IOPS
● You can pack ~30s of them in a single server

○ ~a few thousand IOPS
● Then comes Fusion IO …

ONE MILLION RAND IOPS (r/w mix)

https://nvmexpress.org/wp-content/uploads/2013-FMS-NVMe-Track.pdf
https://www.networkcomputing.com/careers-and-certifications/fusion-io-cracks-1m-iops-ssds

Emergence of NVM Express

13

NVM Express is a protocol specification regarding how
host software communicates with NVM storage
across the PCI Express (PCIe) bus

● A set of command and response

● Designed for high performance,

highly parallel PCIe NVM storage devices

● Has scope to define lots of control

commands for device management

○ FTL, firmware, temperate, errors, etc.

https://searchstorage.techtarget.com/feature/NVMe-performance-leap-depends-on-all-flash-array-architecture-used
https://www.ecko.ro/en/blog/three-common-myths-about-nvme-storage-devices

https://searchstorage.techtarget.com/feature/NVMe-performance-leap-depends-on-all-flash-array-architecture-used
https://www.ecko.ro/en/blog/three-common-myths-about-nvme-storage-devices

Host

NVMe ideas - namespaces
Key challenge: how to exploit parallelism inside the device

14

Namespace A Namespace B Namespace C Namespace D

NVM Controller

I/O channels

Multiple independent partition of a device (block range start:end)
Independent I/O channels can be created in namespaces

NVMe ideas - Command/Completion queues

15

NVM Controller

Core0 Core “K”

A command queue and completion queue based structure
● Small commands - 64 Bytes (no legacy stuff). Initially, 10 admin commands, and 3 I/O commands (r/w/f)
● 16 bytes completion structure
● 64K queues, 64K deep, outstanding requests
● A large number of interrupt mapping possible
● Any possible mapping of command:completion queue possible based on the architecture

CommandQ
CompletionQ

There are
separate special
Admin queues

https://www.slideshare.net/LarryCover/sz14-ssds002-100engf-nvme

https://www.slideshare.net/LarryCover/sz14-ssds002-100engf-nvme

In comparison, AHCI vs. NVMe
1. Aggregation vs Point-to-Point Architecture

a. AHCI is a single point of aggregation vs NVMe has point-to-point PCIe lanes
b. Helps with high bandwidth and scalable performance

2. Opportunities to exploit device parallelism
a. HDDs are slow, and queuing up inside the device does not help much
b. NVM SSDs are fast, and have lots of parallel parts, inside device queuing helps
c. (Max) 64K queue, 64K deep (vs AHCI 32 ports/queues, 32 deep)
d. Support for multiple interrupts (NVMe) vs single interrupt to AHCI

3. Lightweight device interaction and streamlined shared data structures
a. 9 device registers read/write (AHCI) vs 2 device register (NVMe) read/writes for a

command completion
b. Possibility to amortize command issuing over multiple commands in one dispatch

4. Possibility to multipath and networking over PCIe (Ethernet)
16 https://sata-io.org/sites/default/files/documents/NVMe%20and%20AHCI_%20_long_.pdf

https://sata-io.org/sites/default/files/documents/NVMe%20and%20AHCI_%20_long_.pdf

Early prototyping (Chatham NVMe prototype)

NVMe reduces latency overhead by more than 50%

● SCSI/SAS : 6.0 μs 19,500 cycles
● NVMe : 2.8 μs 9,100 cycles

17
https://nvmexpress.org/wp-content/uploads/2013-FMS-NVMe-Track.pdf

PCIe removes the hardware/link overheads
NVMe removes the protocol overheads

https://nvmexpress.org/wp-content/uploads/2013-FMS-NVMe-Track.pdf

NVM Express : Reduces software overheads

18Xu and others, Performance Analysis of NVMe SSDs and their Implication on Real World Databases, ACM Systor 2015,
https://dl.acm.org/doi/10.1145/2757667.2757684.

● From HDD to SATA SSD the relative overhead of software is increased from 0.5% to 28%
● NVMe reduces the relative software overhead to ~7%

https://dl.acm.org/doi/10.1145/2757667.2757684

NVM Express: Improves IOPS and bandwidth

19Xu and others, Performance Analysis of NVMe SSDs and their Implication on Real World Databases, ACM Systor 2015,
https://dl.acm.org/doi/10.1145/2757667.2757684.

● 750K IOPS in a single NVMe device!
● 3 GB/sec bandwidth (bounded by the PCIe links)

Log y axis

https://dl.acm.org/doi/10.1145/2757667.2757684

NVM Express: I/O latencies

20Xu and others, Performance Analysis of NVMe SSDs and their Implication on Real World Databases, ACM Systor 2015,
https://dl.acm.org/doi/10.1145/2757667.2757684.

1-3 orders of magnitude better read performance (in comparison to SATA SSD and HDD)
Similar random and sequential read/write latencies (we will see later, one is better than the other)

Lo
g y

 axis

https://dl.acm.org/doi/10.1145/2757667.2757684

Today: NVM Express
One of the most popular and de-facto standard for
high-performance NVM storage devices

A comprehensive set of control, data command set,
semantics, and response

Constantly being updated to include the demands from
the industries and input from academia

In the project, you talk to a NVMe device using the
NVMe command set (ZNS command set uses the NVMe
command set)

21

The Linux storage stack - software (simplified)

22

User space applications (databases, key-value store, browsers, file and email servers)

The virtual file system (VFS)

The page buffer
cache Network-fs

(NFS, samba)
Pseudo FS
(proc, sys)

Special FS
(tmpfs)

Block-FS
(ext4, f2fs, brtfs)

Linux Block Layer

Device drivers
(NVMe)

read, write, open, stat, chmod (syscalls)

Kernel

Linux Block IO: Introducing Multi-queue SSD Access on Multi-core Systems
(2013)

23

Key challenges
In the early 2010, lots of hardware/protocol optimizations were happening

Two trends were evident

1. Performance of NVMe SSD (i.e., flash) was improving rapidly
2. Single CPU performance was stalled

a. Most gains came from multi-core / multi-socket systems

24

The Linux I/O stack
The Linux Block Layer

● Unified interface to application
and device drivers

● Provides many common services like IO
buffering, scheduling, fairness,
accounting, error handling, etc.

An essential part of the storage I/O

Can the Linux Block I/O layer scale on multi-core
machines to match the SSD performance?

25

Performance evaluation of the block I/O

26Performance collapses as the number of cores / socket increases (guesses?)

Key reasons
1. Request queue locking

the single request queue becomes the single
point of contention in multi core machine

2. Hardware interrupts
driver/stack was not ready to distribute load
generated by interrupts on the cpu0

3. Remote Memory Access
Cross socket memory access to issue and
complete a request, poor performance

27

Can you think of why there
was a single queue design?

Key proposals
A two stage split multi-queue interface
(separation of concerns design principle)

Software Staging Queues
● Local to each core/socket → reduces contention and

NUMA memory accesses
● Hooks to provide OS/software services
● Software manipulation does not need to sync

between cores

Hardware Dispatch Queues
● Any number of queues supported by the device
● Use the queues close to the CPU core
● Helps to use and distribute interrupts

○ Interrupts/queue (simplified) 28

Significant baseline improvements

29

● General improvements across the spectrum (but still)
○ Raw is performance when the block layer is skipped

● Second socket leads to fall in performance for Single Queue (SQ)
○ Coherence and locking

● Multiqueue (MQ) follows the performance of raw closely

What else can we optimize here?

Application-level I/O submission
Optimizations in the application-level API and
implementation (libaio)

● A global context list lock
○ Replaced by lockless list with CAS instructions

● A completion ring based notification to the
user thread

○ Remove it

● Various shared variables throughout the
stack

○ Reimplement them with per-core variables and
CAS instructions

30General broader challenge: “An Analysis of Linux Scalability to Many Cores” (OSDI 2010), https://pdos.csail.mit.edu/papers/linux:osdi10.pdf

https://pdos.csail.mit.edu/papers/linux:osdi10.pdf

As a result …

Managed to push IOPS close to 15 million IOPS

More importantly, made the Linux block layer scalable and ready for the future NVMe devices
31

When Poll is Better than Interrupt (2012)

32

Any guesses, why?
Faster may be, but better? How?

The classic way of doing an I/O operation
Asynchronous I/O (it is a loaded term)

● Software issues a request
● And then switches to something else
● (At some point in future) Request completes and there

is an interrupt for notification

33
https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf

https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf

The classic way of doing an I/O operation

34
For 4kB transfer, Ta = Ta’ + Ta” ~4.8 usec, Td = 4.1 usec, Tb (sched) = 1.4 usec, Tu = 2.7 usec

Asynchronous I/O (it is a loaded term)
● Software issues a request
● And then switches to something else
● (At some point in future) Request completes and there

is an interrupt for notification

Challenges with the classical way
● Device latencies are improving significantly

○ 10s of useconds, overheads shifting from hardware to software

● Scheduling and context switching have latencies comparable to device I/O
○ Does it make sense to context switch when the I/O will be completing in that time?

System calls? (Can we do zero system call I/O? - lecture 11)
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Soares.pdf (OSDI 2010)

● Interrupt generation and processing take time
○ Interrupts destroy the current execution context
○ Poor cache profile, and instruction pipeline flushing
○ Interrupt storm / livelocks (high-performance networking problem in storage)

● Gap in the load, results in CPU entering the energy saving “C” states, thus,
introducing latencies of 1-2 useconds

Can we do better? 35

https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Soares.pdf

Synchronous completion: Polling
Constantly poll to check if the command is completed
● In-place command completion (hence, synchronous in order)
● Better performance

36
https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf

https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf

Asynchronous vs. Synchronous completion timeline
Where do the gains come from?

37https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf

https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf

Performance : Sync. vs. Async. completions

38

For a single I/O latency
● C-State introduces latencies
● Sync is faster than the async

As interrupts are not taken, less context switches →
results in better utilization of the CPU cycles (even
perhaps both of them use 100% of CPU cycles)

When to use poll?

39

When to use Poll - The utility spectrum

40

Like everything in systems, there is no all-good
optimizations. When to poll?

● When device service time is comparable to
software overheads

○ Cost of scheduling
○ Cost of taking interrupts
○ Device latencies

● Application overheads
○ Can kernel figure out always when to

poll? How can application tell kernel to
poll?

■ New APIs (io_uring)
○ Buffer management

Short answer: Measure and decide :-)
https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf

https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf

In Linux

Part of the mainstream kernel

● 1 is enabled with io_poll
● Delay

○ -1: classical spin looping
○ 0 : hybrid strategy, kernel will figure out the best way for you
○ [any_value]: nanosecond time to delay between checking

● It would be an interesting thesis/research project to evaluate impact of
these parameters on the “application” performance

41

Complexity

42

Zebin Ren and Animesh Trivedi,
Performance Characterization of Modern Storage Stacks:
POSIX I/O, libaio, SPDK, and io_uring, CHEOPS 2023,
https://dl.acm.org/doi/abs/10.1145/3578353.3589545
https://atlarge-research.com/pdfs/2023-cheops-iostack.pdf

How to optimize your storage
I/O?

Multiple ways of doing I/O

Queues

Interactions, signals, interrupts

https://dl.acm.org/doi/abs/10.1145/3578353.3589545
https://atlarge-research.com/pdfs/2023-cheops-iostack.pdf

Implications of Fast NVM on Data Center

43

- Mihir Nanavati, Malte Schwarzkopf, Jake Wires, and Andrew Warfield. 2015. Non-volatile Storage: Implications of the Datacenter’s Shifting Center. Queue
13, 9 (November-December 2015), 33–56. DOI:https://doi.org/10.1145/2857274.2874238

- Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan. 2017. Attack of the killer microseconds. Commun. ACM 60, 4 (April 2017), 48–54.
DOI:https://doi.org/10.1145/3015146

https://doi.org/10.1145/2857274.2874238
https://doi.org/10.1145/3015146

Historically
CPU have been improving (Moore’s Law and Multi Core scalability)

DRAM speeds have been improving (latency not so much)

44Network performance over time (2-3 oom) Storage performance over time (4-6 oom)

Trends in the data center
1. The age-old assumption that I/O is slow and computation is fast is no longer true

a. this invalidates decades of design decisions that are deeply embedded in today's systems
b. Examples: use caching, prefetching, trade CPU for I/O (compression?)

2. The relative performance of layers in systems has changed by a factor of a thousand times over a
very short time (this has never happened in computing before!)

a. this requires rapid adaptation throughout the systems software stack
b. Examples: PCIe/NVMe storage that exposed overheads in the software stack

3. Piles of existing enterprise datacenter infrastructure—hardware and software—are about to become
useless (or, at least, very inefficient)

a. SCMs require rethinking the compute/storage balance and architecture from the ground up
b. Example: moving MySQL from SATA RAID to SSDs improves performance only by 5-7x, the raw

devices might offer 10-100-1000x times better performance
c. For your RocksDB project and how to integrate that on ZNS?

45

A balancing act: Balanced Systems

46

CPU

NVM

Network

CPUCPU
NVM NVM

Network Network

Are all resources utilized?
Waste of money if idle

Can all resourced be occupied?
CPU enough? DRAM enough?

CPUCPUDRAM

Is workload capable of
utilizing all resources?

Is this the right machine for the
placement of the workload

Is systems/cloud software capable
of utilizing and scaling all
resources

It is an open-research problem

What you should know from this lecture
● What is NVM Express and why it was developed
● What are the main feature of NVM Express

○ Multiple, deep queues
○ Memory mapped I/O submission and completion

● What are the challenges with the scalability of the block layer on
multi-core systems

● What is synchronous (poll) vs. asynchronous completion
○ Why would you poll on a storage stack

● What is Asynchronous I/O stack - what did they propose and why it was
beneficial

● Changing trends inside a data center

47

Lecture Reading List
● High Performance Solid State Storage Under Linux, https://storageconference.us/2010/Papers/MSST/Seppanen.pdf, MSST 2010

● Xu and others, Performance Analysis of NVMe SSDs and their Implication on Real World Databases, ACM Systor 2015,

https://dl.acm.org/doi/10.1145/2757667.2757684.

● A Comparison of NVMe and AHCI, https://sata-io.org/sites/default/files/documents/NVMe%20and%20AHCI_%20_long_.pdf

● Matias Bjørling, Jens Axboe, David Nellans, and Philippe Bonnet. 2013. Linux block IO: introducing multi-queue SSD access on multi-core systems. In Proceedings of the

6th International Systems and Storage Conference (SYSTOR '13). Association for Computing Machinery, New York, NY, USA, Article 22, 1–10.

● Jisoo Yang, Dave B. Minturn, and Frank Hady. 2012. When poll is better than interrupt. In Proceedings of the 10th USENIX conference on File and Storage Technologies

(FAST'12). USENIX Association, USA, 3.

● Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham, Jae W. Lee, and Jinkyu Jeong. 2019. Asynchronous I/O stack: a low-latency kernel I/O stack for ultra-low latency

SSDs. In Proceedings of the 2019 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '19). USENIX Association, USA, 603–616.

● Mihir Nanavati, Malte Schwarzkopf, Jake Wires, and Andrew Warfield. 2015. Non-volatile Storage: Implications of the Datacenter’s Shifting Center. Queue 13, 9

(November-December 2015), 33–56. DOI:https://doi.org/10.1145/2857274.2874238

● Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, Rachit Agarwal, Rearchitecting Linux Storage Stack for µs Latency and High Throughput. OSDI 2021.

● Anastasios Papagiannis, Giorgos Saloustros, Manolis Marazakis, and Angelos Bilas. 2017. Iris: An optimized I/O stack for low-latency storage devices. SIGOPS Oper. Syst.

Rev. 50, 2 (December 2016), 3–11. DOI:https://doi.org/10.1145/3041710.3041713

● Jie Zhang, and others. 2018. Flashshare: punching through server storage stack from kernel to firmware for ultra-low latency SSDs. In Proceedings of the 13th USENIX

conference on Operating Systems Design and Implementation (OSDI'18). USENIX Association, USA, 477–492.

48

https://storageconference.us/2010/Papers/MSST/Seppanen.pdf
https://dl.acm.org/doi/10.1145/2757667.2757684
https://sata-io.org/sites/default/files/documents/NVMe%20and%20AHCI_%20_long_.pdf
https://doi.org/10.1145/2857274.2874238
https://doi.org/10.1145/3041710.3041713

Backup (not a part of the course)

49

Asynchronous I/O Stack: A Low-latency Kernel I/O Stack for Ultra-Low
Latency SSDs (2019)

50

What are the Challenges
A new class of ultra-low latency devices

● Optane SSDs, Samsung Z-SSD
● < 10 usec latencies, 3+GB/s bandwidth

Pressure on the software stack to deliver
performance, do you get the raw device latencies when
doing I/O?
● Understand that software and optimizations for 100usec

will look very different than optimizations for 10usec

Polling helps to eliminate the context switch overheads
between the the time we issue an I/O request to the
device and we get a response …

But what is happening before that? 51

Quantify the Problem

52

Ultra-low SSDs like Z-SSDs and Optane SSDs have
● Much smaller device-time for reads
● Smaller device-time for writes

Optane SSDs have 50-50 split between hardware and software time, can we do better in software?

The Linux Storage Stack - Software (simplified)

53

User space applications (databases, key-value store, browsers, file and email servers)

The virtual file system (VFS)

The page buffer
cache Network-fs

(NFS, samba)
Pseudo FS
(proc, sys)

Special FS
(tmpfs)

Block-FS
(ext4, f2fs, brtfs)

Linux Block Layer

Device drivers
(NVMe)

read, write, open, stat, chmod (syscalls)

Kernel

Deeper Dive on the read Path

54

VFS + Page cache
● Missing page lookups
● Page allocation

File system
● LBA lookup
● Block I/O (bio) alloc
● Submit bio
● Page cache insertion (atomic)

Block layer
● Scheduling, merging

NVMe drive
● DMA mapping/unmapping

Ultra-low latency (ULL) devices

Layer % in kernel time

VFS 9-10.8%

File system 4.5-12%

Block layer 26-28.5%

NVMe driver 10-11%

Scheduling 25-41.5%

Block Layer Overheads
A lots of steps inside the block layer

● Dynamic allocation of struct bio
○ Separate slab cache

● Transformation of a bio (kernel) to an
I/O request (device)

● Passing through software and
hardware queues (multiQ)

● IO descriptor object and preparing a
DMA request for transfer

○ Memory mapping/unmapping

Lots of step (are they all necessary?)
55

Dynamic objects in the shaded areas

Timeline Comparison - Vanilla vs. Proposed read Path

56

How to Make it Happen?
Lightweight block I/O layer (or LBIO)

● Simple, but very interesting idea
● Preallocate a bunch of object

○ Single lbio structure containing all information
○ Pre DMA-mapped page pool for I/O
○ Reduce locking and scheduling by mapping 1:1

pages to CPU cores and NVMe queues
■ Core x queue dimension

The idea is quite general and is used in many
other systems like high-performance
networking (RDMA - preallocation of buffers)

57

Optimized Lightweight Block layer

58

● 0.18–0.60μs I/O submission latency in lbio
● 83.4%–84.4% shorter than the original block layer

Rest of the File read Path
1. How to do a fast file offset → LBA lookup? Not all

mappings might be in memory and file system needs
to do further I/O to look them up

a. Solution: when a file is open, preload the whole mapping in the
memory

b. Memory consumption? Can be done selectively

2. How to manage DMA-mapped page pool?
a. Solution: pick one, start using it, but asynchronously add

another page
b. Solution: once I/O is finished, only unmap lazily when the new

page is needed

3. Atomic page-cache insertion before I/O
a. Solution: well...there will be duplicate work, and we will discard it

59

file

open

FS

Full file offset
to LBA mapping

asynchronously

Critical path

Performance: Microbenchmark and RocksDB

60

● AIOS results in scalable latency gains with higher bandwidth
● RocksDB random read performance is improved by 11-32%

