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Syllabus outline 
1. Welcome and introduction to NVM (today) 
2. Host interfacing and software implications 
3. Flash Translation Layer (FTL) and Garbage Collection (GC) 
4. NVM Block Storage File systems 
5. NVM Block Storage Key-Value Stores 
6. Emerging Byte-addressable Storage
7. Networked NVM Storage 
8. Trends: Specialization and Programmability 
9. Distributed Storage / Systems - I 

10. Distributed Storage / Systems - II
11. Emerging Topics 
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Ramifications of fast flash storage 
First flash storage devices in mainstream computing 
showed up in mid-2000s (2005-2006-2007) 

● Recall that flash NAND/NOR are already used extensively in 
embedded systems, ROM/BIOS, etc. 

Typically (and often) a new technology is packed 
behind a known systems interface

First generation of flash devices were packaged 
as a fast “HDD” running with compatible SAS/SATA 
HDD protocols for data transfers 

3https://www.enterprisestorageforum.com/storage-hardware/ssd-vs-hdd.html 

https://www.enterprisestorageforum.com/storage-hardware/ssd-vs-hdd.html


Classical HDD setup: AHCI
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Processor Socket 
Complex

(memory controller, 
caches, cores, etc.)

Advanced Host 
Controller 
Interface 

AHCIPCIe

SATA

AHCI is implemented in motherboards 

Single point to implement the protocol translation between PCIe and SATA 

Support multiple devices types (HDD, optical drives, floppy drives?) 



AHCI challenges 

Single bottleneck for performance, SATA speeds (or SAS) were just not fast enough 

5           2003     2004                                   ~2009                                      2013 

SATA 1.0 
(1.5 Gbps, ~150 MB/s) 
                       SATA 2.0                                               SAS 2.0                                                               SAS 3.0 
                        (3 Gbps, ~300 MB/s)                          (6Gbps)                                                               (12 Gbps)
                                                                                            SATA 3.0
                                                                                            (6 Gbps, ~600 MB/s) 

SAS-4: 22.5 Gbit/s called 
"24G" standardized  in 
2017

Processor Socket 
Complex

(memory controller, 
caches, cores, etc.)

Advanced Host 
Controller 
Interface 

AHCIPCIe

SATA



Challenges with the storage protocols 
Beyond just the hardware speeds 

● SAS/SATA protocols were too slow to evolve, took multi years for one 
standard to get to the next 

○ See the time between different version 4-5 years, it has improved later 

● The AHCI centralized complex became (hardware) performance 
bottleneck as I/O requests have an intermediary stop 

○ Low latency 
○ High IOPS 
○ Complexity of implementation and revision with new generation of flash drives 
○ Could take up to 6 microseconds on the wire 

6(2012) https://www.snia.org/sites/default/education/tutorials/2012/fall/solid/AnilVasudeva_NVMe_NextGen_SSD%20Interface-r1-nc1.pdf 

https://www.snia.org/sites/default/education/tutorials/2012/fall/solid/AnilVasudeva_NVMe_NextGen_SSD%20Interface-r1-nc1.pdf


Basic operations

7
Section 4.2., A Comparison of NVMe and AHCI  https://sata-io.org/system/files/member-downloads/NVMe%20and%20AHCI_%20_long_.pdf

https://sata-io.org/system/files/member-downloads/NVMe%20and%20AHCI_%20_long_.pdf


Linux storage software stack 
components
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Applications

VFS

ext4 XFS Brtfs

Block Layer

SCSI mid-layer

SCSCI low-level drivers

https://www.thomas-krenn.com/en/wiki/Linux_Storage_Stack_Diagram
High Performance Solid State Storage Under Linux, https://storageconference.us/2010/Papers/MSST/Seppanen.pdf, MSST 2010 

https://www.thomas-krenn.com/en/wiki/Linux_Storage_Stack_Diagram#Diagram_for_Linux_Kernel_6.2
https://storageconference.us/2010/Papers/MSST/Seppanen.pdf


High software overheads
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(2010) timeframe 

● It takes ~20,000 instructions to issue and 
complete a 4kB I/O request in Linux 

● Total time = 23 μsec

In a setup with an experimental device (Moneta) 

● ~2 μsec is for the storage hardware, PCM 
● 13 μsec out of 23 μsec is software overhead (62%) 
● For RAID-HDD this is less than 1% 

Moneta: A High-performance Storage Array Architecture for Next-generation, Non-volatile Memories, 
http://mesl.ucsd.edu/pubs/Caulfield_MICRO10.pdf , 2010. 

http://mesl.ucsd.edu/pubs/Caulfield_MICRO10.pdf


To summarize
2008-2009-2010 timeframe 

● Fast high-bandwidth flash SSDs were hitting the market 

However, their performance was bottlenecked by the 

● Hardware overheads: HDD-oriented AHCI interfaces and SAS/SATA 
protocols 

● Software overheads: HDD-oriented software design decisions made for 
slow storage devices (i.e., HDDs) that needed revision 

A radically new way of integrating new emerging storage was needed…. 

10



Connect NVM storage directly to the PCIe bus
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Processor Socket 
Complex
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SATA

Processor Socket 
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controller, caches, 
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PCIe

Attach them directly on the PCIe bus, why? 
● No HBA, directly to the CPU 
● Scalable port width (1-16x lanes) 
● High bandwidth/lane (~500MB/lane for 

v2.0, today 4.0 has 2GB/lane) 
● Standard bus, supported by all 
● Large configuration/data space 
● Power efficient …  



Multiple competitive standards and proprietary solutions

12https://nvmexpress.org/wp-content/uploads/2013-FMS-NVMe-Track.pdf 
https://www.networkcomputing.com/careers-and-certifications/fusion-io-cracks-1m-iops-ssds 

Image yourself in 2009
● you spent all your life optimizing to squeeze 

out a bit of performance from storage 
● A HDD does ~100s of random IOPS 
● You can pack ~30s of them in a single server 

○ ~a few thousand IOPS 
● Then comes Fusion IO … 

ONE MILLION RAND IOPS (r/w mix) 

https://nvmexpress.org/wp-content/uploads/2013-FMS-NVMe-Track.pdf
https://www.networkcomputing.com/careers-and-certifications/fusion-io-cracks-1m-iops-ssds


Emergence of NVM Express 
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NVM Express is a protocol specification regarding how 
host software communicates with NVM storage 
across the PCI Express (PCIe) bus

● A set of command and response 

● Designed for high performance, 

highly parallel PCIe NVM storage devices 

● Has scope to define lots of control 

commands for device management 

○ FTL, firmware, temperate, errors, etc. 

https://searchstorage.techtarget.com/feature/NVMe-performance-leap-depends-on-all-flash-array-architecture-used 
https://www.ecko.ro/en/blog/three-common-myths-about-nvme-storage-devices 

https://searchstorage.techtarget.com/feature/NVMe-performance-leap-depends-on-all-flash-array-architecture-used
https://www.ecko.ro/en/blog/three-common-myths-about-nvme-storage-devices


Host 

NVMe ideas - namespaces 
Key challenge: how to exploit parallelism inside the device 

14

Namespace A Namespace B Namespace C Namespace D

NVM Controller 

I/O channels

Multiple independent partition of a device (block range start:end)
Independent I/O channels can be created in namespaces 



NVMe ideas - Command/Completion queues  
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NVM Controller 

Core0                                                                   Core “K”

A command queue and completion queue based structure 
● Small commands  - 64 Bytes (no legacy stuff). Initially, 10 admin commands, and 3 I/O commands (r/w/f) 
● 16 bytes completion structure 
● 64K queues, 64K deep, outstanding requests 
● A large number of interrupt mapping possible 
● Any possible mapping of command:completion queue possible based on the architecture 

CommandQ
CompletionQ 

There are 
separate special 
Admin queues

https://www.slideshare.net/LarryCover/sz14-ssds002-100engf-nvme 

https://www.slideshare.net/LarryCover/sz14-ssds002-100engf-nvme


In comparison, AHCI vs. NVMe
1. Aggregation vs Point-to-Point Architecture 

a. AHCI is a single point of aggregation vs NVMe has point-to-point PCIe lanes 
b. Helps with high bandwidth and scalable performance 

2. Opportunities to exploit device parallelism 
a. HDDs are slow, and queuing up inside the device does not help much 
b. NVM SSDs are fast, and have lots of parallel parts, inside device queuing helps  
c. (Max) 64K queue, 64K deep (vs AHCI 32 ports/queues, 32 deep) 
d. Support for multiple interrupts (NVMe) vs single interrupt to AHCI 

3. Lightweight device interaction and streamlined shared data structures 
a. 9 device registers read/write (AHCI) vs 2 device register (NVMe) read/writes for a 

command completion  
b. Possibility to amortize command issuing over multiple commands in one dispatch 

4. Possibility to multipath and networking over PCIe (Ethernet) 
16 https://sata-io.org/sites/default/files/documents/NVMe%20and%20AHCI_%20_long_.pdf  

https://sata-io.org/sites/default/files/documents/NVMe%20and%20AHCI_%20_long_.pdf


Early prototyping (Chatham NVMe prototype) 

NVMe reduces latency overhead by more than 50%

● SCSI/SAS   : 6.0 μs   19,500 cycles
● NVMe        : 2.8 μs     9,100 cycles

17
https://nvmexpress.org/wp-content/uploads/2013-FMS-NVMe-Track.pdf 

PCIe removes the hardware/link overheads 
NVMe removes the protocol overheads 

https://nvmexpress.org/wp-content/uploads/2013-FMS-NVMe-Track.pdf


NVM Express : Reduces software overheads

18Xu and others, Performance Analysis of NVMe SSDs and their Implication on Real World Databases, ACM Systor 2015, 
https://dl.acm.org/doi/10.1145/2757667.2757684.  

● From HDD to SATA SSD the relative overhead of software is increased from 0.5% to 28% 
● NVMe reduces the relative software overhead to ~7%

https://dl.acm.org/doi/10.1145/2757667.2757684


NVM Express: Improves IOPS and bandwidth

19Xu and others, Performance Analysis of NVMe SSDs and their Implication on Real World Databases, ACM Systor 2015, 
https://dl.acm.org/doi/10.1145/2757667.2757684.  

● 750K IOPS in a single NVMe device! 
● 3 GB/sec bandwidth (bounded by the PCIe links) 

Log y axis

https://dl.acm.org/doi/10.1145/2757667.2757684


NVM Express: I/O latencies

20Xu and others, Performance Analysis of NVMe SSDs and their Implication on Real World Databases, ACM Systor 2015, 
https://dl.acm.org/doi/10.1145/2757667.2757684.  

1-3 orders of magnitude better read performance (in comparison to SATA SSD and HDD) 
Similar random and sequential read/write latencies (we will see later, one is better than the other)

Lo
g y

 axis

https://dl.acm.org/doi/10.1145/2757667.2757684


Today: NVM Express 
One of the most popular and de-facto standard for 
high-performance NVM storage devices 

A comprehensive set of control, data command set, 
semantics, and response 

Constantly being updated to include the demands from 
the industries and input from academia 

In the project, you talk to a NVMe device using the 
NVMe command set (ZNS command set uses the NVMe 
command set) 

21



The Linux storage stack - software (simplified) 

22

User space applications (databases, key-value store, browsers, file and email servers) 

The virtual file system (VFS) 

The page buffer 
cache Network-fs 

(NFS, samba)
Pseudo FS
(proc, sys)

Special FS
(tmpfs) 

Block-FS
(ext4, f2fs, brtfs)

Linux Block Layer

Device drivers 
(NVMe)

read, write, open, stat, chmod (syscalls)  

Kernel



Linux Block IO: Introducing Multi-queue SSD Access on Multi-core Systems 
(2013)

23



Key challenges
In the early 2010, lots of hardware/protocol optimizations were happening

Two trends were evident 

1. Performance of NVMe SSD (i.e., flash) was improving rapidly 
2. Single CPU performance was stalled 

a. Most gains came from multi-core / multi-socket systems 

24



The Linux I/O stack
The Linux Block Layer 

● Unified interface to application 
and device drivers 

● Provides many common services like IO 
buffering, scheduling, fairness, 
accounting, error handling, etc. 

An essential part of the storage I/O 

Can the Linux Block I/O layer scale on multi-core 
machines to match the SSD performance?

25



Performance evaluation of the block I/O

26Performance collapses as the number of cores / socket increases (guesses?) 



Key reasons 
1. Request queue locking 

the single request queue becomes the single 
point of contention in multi core machine 

2. Hardware interrupts 
driver/stack was not ready to distribute load 
generated by interrupts on the cpu0

3. Remote Memory Access 
Cross socket memory access to issue and 
complete a request, poor performance 

27

Can you think of why there 
was a single queue design?



Key proposals 
A two stage split multi-queue interface 
(separation of concerns design principle) 

Software Staging Queues
● Local to each core/socket → reduces contention and 

NUMA memory accesses 
● Hooks to provide OS/software services 
● Software manipulation does not need to sync 

between cores

Hardware Dispatch Queues
● Any number of queues supported by the device 
● Use the queues close to the CPU core 
● Helps to use and distribute interrupts 

○ Interrupts/queue (simplified) 28



Significant baseline improvements 

29

● General improvements across the spectrum (but still) 
○ Raw is performance when the block layer is skipped 

● Second socket leads to fall in performance for Single Queue (SQ) 
○ Coherence and locking 

● Multiqueue (MQ) follows the performance of raw closely 

What else can we optimize here?



Application-level I/O submission
Optimizations in the application-level API and 
implementation (libaio) 

● A global context list lock 
○ Replaced by lockless list with CAS instructions 

● A completion ring based notification to the 
user thread 

○ Remove it 

● Various shared variables throughout the 
stack 

○ Reimplement them with per-core variables and 
CAS instructions 

30General broader challenge: “An Analysis of Linux Scalability to Many Cores” (OSDI 2010), https://pdos.csail.mit.edu/papers/linux:osdi10.pdf 

https://pdos.csail.mit.edu/papers/linux:osdi10.pdf


As a result … 

Managed to push IOPS close to 15 million IOPS

More importantly, made the Linux block layer scalable and ready for the future NVMe devices
31



When Poll is Better than Interrupt (2012) 

32

Any guesses, why? 
Faster may be, but better? How?



The classic way of doing an I/O operation
Asynchronous I/O (it is a loaded term)

● Software issues a request 
● And then switches to something else 
● (At some point in future) Request completes and there 

is an interrupt for notification 

33
https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf 

https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf


The classic way of doing an I/O operation

34
For 4kB transfer, Ta = Ta’ + Ta” ~4.8 usec, Td = 4.1 usec, Tb (sched) = 1.4 usec, Tu = 2.7 usec  

Asynchronous I/O (it is a loaded term)
● Software issues a request 
● And then switches to something else 
● (At some point in future) Request completes and there 

is an interrupt for notification 



Challenges with the classical way 
● Device latencies are improving significantly 

○ 10s of useconds, overheads shifting from hardware to software  

● Scheduling and context switching have latencies comparable to device I/O
○ Does it make sense to context switch when the I/O will be completing in that time?

System calls? (Can we do zero system call I/O? - lecture 11) 
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Soares.pdf (OSDI 2010) 

● Interrupt generation and processing take time 
○ Interrupts destroy the current execution context 
○ Poor cache profile, and instruction pipeline flushing 
○ Interrupt storm / livelocks (high-performance networking problem in storage) 

● Gap in the load, results in CPU entering the energy saving “C” states, thus, 
introducing latencies of 1-2 useconds 

Can we do better? 35

https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Soares.pdf


Synchronous completion: Polling
Constantly poll to check if the command is completed 
● In-place command completion (hence, synchronous in order) 
● Better performance 

36
https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf 

https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf


Asynchronous vs. Synchronous completion timeline
Where do the gains come from? 

37https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf 

https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf


Performance : Sync. vs. Async. completions 

38

For a single I/O latency
● C-State introduces latencies 
● Sync is faster than the async 

As interrupts are not taken, less context switches → 
results in better utilization of the CPU cycles (even 
perhaps both of them use 100% of CPU cycles)



When to use poll? 

39



When to use Poll - The utility spectrum 

40

Like everything in systems, there is no all-good 
optimizations. When to poll? 

● When device service time is comparable to 
software overheads 

○ Cost of scheduling 
○ Cost of taking interrupts 
○ Device latencies 

● Application overheads 
○ Can kernel figure out always when to 

poll? How can application tell kernel to 
poll?

■ New APIs (io_uring)  
○ Buffer management 

Short answer: Measure and decide :-) 
https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf 

https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf


In Linux

Part of the mainstream kernel 

● 1 is enabled with io_poll 
● Delay

○ -1: classical spin looping 
○ 0 : hybrid strategy, kernel will figure out the best way for you 
○ [any_value]: nanosecond time to delay between checking 

● It would be an interesting thesis/research project to evaluate impact of 
these parameters on the “application” performance 

41



Complexity

42

Zebin Ren and Animesh Trivedi, 
Performance Characterization of Modern Storage Stacks: 
POSIX I/O, libaio, SPDK, and io_uring, CHEOPS 2023, 
https://dl.acm.org/doi/abs/10.1145/3578353.3589545 
https://atlarge-research.com/pdfs/2023-cheops-iostack.pdf 

How to optimize your storage 
I/O? 

Multiple ways of doing I/O 

Queues 

Interactions, signals, interrupts 

https://dl.acm.org/doi/abs/10.1145/3578353.3589545
https://atlarge-research.com/pdfs/2023-cheops-iostack.pdf


Implications of Fast NVM on Data Center

43

- Mihir Nanavati, Malte Schwarzkopf, Jake Wires, and Andrew Warfield. 2015. Non-volatile Storage: Implications of the Datacenter’s Shifting Center. Queue 
13, 9 (November-December 2015), 33–56. DOI:https://doi.org/10.1145/2857274.2874238 

- Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan. 2017. Attack of the killer microseconds. Commun. ACM 60, 4 (April 2017), 48–54. 
DOI:https://doi.org/10.1145/3015146 

https://doi.org/10.1145/2857274.2874238
https://doi.org/10.1145/3015146


Historically 
CPU have been improving (Moore’s Law and Multi Core scalability) 

DRAM speeds have been improving (latency not so much) 

44Network performance over time (2-3 oom) Storage performance over time (4-6 oom) 



Trends in the data center 
1. The age-old assumption that I/O is slow and computation is fast is no longer true

a. this invalidates decades of design decisions that are deeply embedded in today's systems
b. Examples: use caching, prefetching, trade CPU for I/O (compression?) 

2. The relative performance of layers in systems has changed by a factor of a thousand times over a 
very short time (this has never happened in computing before!) 

a. this requires rapid adaptation throughout the systems software stack
b. Examples: PCIe/NVMe storage that exposed overheads in the software stack 

3. Piles of existing enterprise datacenter infrastructure—hardware and software—are about to become 
useless (or, at least, very inefficient)

a. SCMs require rethinking the compute/storage balance and architecture from the ground up
b. Example: moving MySQL from SATA RAID to SSDs improves performance only by 5-7x, the raw 

devices might offer 10-100-1000x times better performance
c. For your RocksDB project and how to integrate that on ZNS? 

45



A balancing act: Balanced Systems

46

CPU

NVM 

Network 

CPUCPU
NVM NVM 

Network Network 

Are all resources utilized?
Waste of money if idle

Can all resourced be occupied? 
CPU enough? DRAM enough?

CPUCPUDRAM

Is workload capable of 
utilizing all resources?

Is this the right machine for the 
placement of the workload

Is systems/cloud software capable 
of utilizing and scaling all 
resources 

It is an open-research problem



What you should know from this lecture 
● What is NVM Express and why it was developed 
● What are the main feature of NVM Express 

○ Multiple, deep queues 
○ Memory mapped I/O submission and completion 

● What are the challenges with the scalability of the block layer on 
multi-core systems

● What is synchronous (poll) vs. asynchronous completion 
○ Why would you poll on a storage stack 

● What is Asynchronous I/O stack - what did they propose and why it was 
beneficial 

● Changing trends inside a data center 

47
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● Jie Zhang, and others. 2018. Flashshare: punching through server storage stack from kernel to firmware for ultra-low latency SSDs. In Proceedings of the 13th USENIX 
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Backup (not a part of the course) 

49



Asynchronous I/O Stack: A Low-latency Kernel I/O Stack for Ultra-Low 
Latency SSDs (2019) 

50



What are the Challenges 
A new class of ultra-low latency devices

● Optane SSDs, Samsung Z-SSD 
● < 10 usec latencies, 3+GB/s bandwidth 

Pressure on the software stack to deliver 
performance, do you get the raw device latencies when 
doing I/O?
● Understand that software and optimizations for 100usec 

will look very different than optimizations for 10usec 

Polling helps to eliminate the context switch overheads 
between the the time we issue an I/O request to the 
device and we get a response …  

But what is happening before that? 51



Quantify the Problem

52

Ultra-low SSDs like Z-SSDs and Optane SSDs have 
● Much smaller device-time for reads 
● Smaller device-time for writes 

Optane SSDs have 50-50 split between hardware and software time, can we do better in software? 



The Linux Storage Stack - Software (simplified) 

53

User space applications (databases, key-value store, browsers, file and email servers) 

The virtual file system (VFS) 

The page buffer 
cache Network-fs 

(NFS, samba)
Pseudo FS
(proc, sys)

Special FS
(tmpfs) 

Block-FS
(ext4, f2fs, brtfs)

Linux Block Layer

Device drivers 
(NVMe)

read, write, open, stat, chmod (syscalls)  

Kernel



Deeper Dive on the read Path 

54

VFS + Page cache 
● Missing page lookups 
● Page allocation 

File system 
● LBA lookup 
● Block I/O (bio) alloc
● Submit bio 
● Page cache insertion (atomic) 

Block layer
● Scheduling, merging 

NVMe drive 
● DMA mapping/unmapping 

Ultra-low latency (ULL) devices

Layer % in kernel time

VFS 9-10.8%

File system 4.5-12%

Block layer 26-28.5%

NVMe driver 10-11%

Scheduling 25-41.5%



Block Layer Overheads
A lots of steps inside the block layer 

● Dynamic allocation of struct bio 
○ Separate slab cache 

● Transformation of a bio (kernel) to an 
I/O request (device) 

● Passing through software and 
hardware queues (multiQ) 

● IO descriptor object and preparing a 
DMA request for transfer 

○ Memory mapping/unmapping 

Lots of step (are they all necessary?)
55

Dynamic objects in the shaded areas



Timeline Comparison - Vanilla vs. Proposed read Path

56



How to Make it Happen?
Lightweight block I/O layer (or LBIO)

● Simple, but very interesting idea 
● Preallocate a bunch of object 

○ Single lbio structure containing all information 
○ Pre DMA-mapped page pool for I/O 
○ Reduce locking and scheduling by mapping 1:1 

pages to CPU cores and NVMe queues 
■ Core x queue dimension 

The idea is quite general and is used in many 
other systems like high-performance 
networking (RDMA - preallocation of buffers) 

57



Optimized Lightweight Block layer 
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● 0.18–0.60μs I/O submission latency in lbio 
● 83.4%–84.4% shorter than the original block layer



Rest of the File read Path
1. How to do a fast file offset → LBA lookup? Not all 

mappings might be in memory and file system needs 
to do further I/O to look them up 

a. Solution: when a file is open, preload the whole mapping in the 
memory 

b. Memory consumption? Can be done selectively 

2. How to manage DMA-mapped page pool?
a. Solution: pick one, start using it, but asynchronously add 

another page 
b. Solution: once I/O is finished, only unmap lazily when the new 

page is needed 

3. Atomic page-cache insertion before I/O 
a. Solution: well...there will be duplicate work, and we will discard it 
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Performance: Microbenchmark and RocksDB
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● AIOS results in scalable latency gains with higher bandwidth
● RocksDB random read performance is improved by 11-32% 


