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Ramifications of fast flash storage

First flash storage devices in mainstream computing

showed up in mid-2000s (2005-2006-2007)

e Recall that flash NAND/NOR are already used extensively in
embedded systems, ROM/BIOS, etc.

Typically (and often) a new technology is packed
behind a known systems interface

First generation of flash devices were packaged ,
as a fast “HDD"” running with compatible SAS/SATA Srock estant 0 B50g2ms Sk ssstantup o 150010
HDD protocols for data transfers

https://www.enterprisestorageforum.com/storage-hardware/ssd-vs-hdd.html
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Classical HDD setup: AHCI
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Single point to implement the protocol translation between PCle and SATA

Support multiple devices types (HDD, optical drives, floppy drives?)



AHCI challenges
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Single bottleneck for performance, SATA speeds (or SAS) were just not fast enough

SATA 1.0
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Challenges with the storage protocols

Beyond just the hardware speeds

e SAS/SATA protocols were too slow to evolve, took multi years for one

standard to get to the next
o See the time between different version 4-5 years, it has improved later

e The AHCI centralized complex became (hardware) performance

bottleneck as I/0 requests have an intermediary stop

o Low latency

o High IOPS

o Complexity of implementation and revision with new generation of flash drives
o Could take up to 6 microseconds on the wire

(2012) https://www.snia.org/sites/default/education/tutorials/2012/fall/solid/AnilVasudeva NVMe NextGen SSD%20Interface-r1-ncl.pdf
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Section 4.2, A Comparison of NVMe and AHCI https:/sata-io.org/system/files/member-downloads/NVMe%20and%20AHCI %20 long .pdf
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The Linux Storage Stack Diagram (Linux Kernel 6.2)
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https://www.thomas-krenn.com/en/wiki/Linux_Storage_Stack_Diagram#Diagram_for_Linux_Kernel_6.2
https://storageconference.us/2010/Papers/MSST/Seppanen.pdf

High software overheads

22
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e It takes ~20,000 instructions to issue and . B ova
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Issue

e ~2 pusecis for the storage hardware, PCM Copy B

- [] os/user \
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Moneta: A High-performance Storage Array Architecture for Next-generation, Non-volatile Memories, 9
http://mesl.ucsd.edu/pubs/Caulfield MICRO10.pdf, 2010.



http://mesl.ucsd.edu/pubs/Caulfield_MICRO10.pdf

To summarize

2008-2009-2010 timeframe
e Fast high-bandwidth flash SSDs were hitting the market
However, their performance was bottlenecked by the

e Hardware overheads: HDD-oriented AHCI interfaces and SAS/SATA
protocols

e Software overheads: HDD-oriented software design decisions made for
slow storage devices (i.e., HDDs) that needed revision

A radically new way of integrating new emerging storage was needed....

10



Connect NVM storage directly to the PCle bus

SATA
Processor Socket
Complex
memory |
controller, caches, oC|
cores, etc.) €
\_ J

Attach them directly on the PCle bus, why?

e No HBA, directly to the CPU
e Scalable port width (1-16x lanes)
Proccegfsgli())(cket <:> e High bandwidth/lane (~500MB/lane for
(memory v2.0, today 4.0 has 2GB/lane)
controller. caches e Standard bus, supported by all
! ' e Large configuration/data space
\_ cores, etc.) ) <:> e Power efficient ...
11
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Multiple competitive standards and proprietary solutions

Virident
= Fusion-io H
\
\ ONE MILLION RAND IOPS (r/ )
v r/w mix
1 LSl | April 06, 2009 12:47 PM Eastern Daylight Time
Flash Memory Summit 2013 Marvell - SALT LAKE CITY--(BUSINESS WIRE)--First graph, second sentence of release should read: bullt a system using five 320GB loDrive

Duos and six 160GB IoDrives (sted using five 320MB loDrive Duos and six 160MB IoDrives.)

| m age yo u rse |f i n 2009 “Quad-Core AMD Opteron processors help

drive efficiencies and reduce complexities with

The corrected release reads:

FUSION-I0 BREAKS STORAGE PERFORMANCE BARRIERS, EXCEEDING

PY you Spent a” you r ||fe OptImIZI ng tO Squeeze innovations that enable superior performance” 1 MILLION IOPS AND 8 GB/S THROUGHPUT WITHIN A SINGLE HP
Tweet this PROLIANT SERVER
out a bit of performance from storage
Fuslon-lo, the leader In application-centric, solid-state architecture and high-
~ performance I/O solutions, working with HP, the world's largest technology company, today announced that they exceeded an
® A H D D d Oes 1 OOS Of ra n d 0 m I O PS astonishing 1 million IOPS (/O Operations Per Second) and eight gigabytes per second (GB/s) sustained throughput using a single HP
H H ProLiant server.
e You can pack ~30s of them in a single server
Working together In HP’s ProLiant eng| R +am HP and Fuslon-io built a system using five 320GB
@) ~a feW th O U Sa n d I O PS loDrive Duos and six 160GB ioDrives In|a single HP ProLiant DL785 G5 server, funning with four Quad-Core AMD Opteron™
. processors. This standard configuration allowed the enameers 1o reach an unprecedented eight GB/s sustained throughput, making It
[ ] Th en comes Fus’on /O Ve possible to achleve{ 1,009,384 IOPS using 2KB random 70/30 read/write mix, ps measured using the fio benchmark.

1

https://nvmexpress.org/wp-content/uploads/2013-FMS-NVMe-Track.pdf
https://www.networkcomputing.com/careers-and-certifications/fusion-io-cracks-1m-iops-ssds

12



https://nvmexpress.org/wp-content/uploads/2013-FMS-NVMe-Track.pdf
https://www.networkcomputing.com/careers-and-certifications/fusion-io-cracks-1m-iops-ssds

Emergence of NVM Express

NVM Express is a protocol specification regarding how
host software communicates with NVM storage
across the PCI Express (PCle) bus

EXPRESS 4

NVMe milestones
e Asetof command and response
e Designed for high performance, i 2000 2016
Seaﬂ;g:gg/\é:\élég{:&ted NVIMe lé) ho\llgan(r(s:{?\llilpMe NVMe-IoTsts::lFabéics angs%ibr_!le:a%?b:gg e
highly para”el PCIe NVM Storage deViceS of P I_e Ds reegse Pugest specrgease parltywn. TA SSDs
e Has scope to define lots of control | | ‘ | |
2008 2012 2014 2017 2020
. Non-Volatile Memory NVMe 1.1 First NVMg ! N::Igllr:-og Zps.zc NVI\e/Ie v;/ill
commands for device management Ml maibme  osomnun
.0 complete releaset ratifie interface
protocol for
o FTL, firmware, temperate, errors, etc. pnenses

https://searchstorage.techtarget.com/feature/NVMe-performance-leap-depends-on-all-flash-array-architecture-used 13
https://www.ecko.ro/en/blog/three-common-myths-about-nvme-storage-devices



https://searchstorage.techtarget.com/feature/NVMe-performance-leap-depends-on-all-flash-array-architecture-used
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NVMe ideas - namespaces

Key challenge: how to exploit parallelism inside the device

Host

I/0 channels

NVM Controller

- - Ll
[ |
Namespace A Namespace B Namespace C Namespace D

Multiple independent partition of a device (block range start:end)
Independent I/O channels can be created in namespaces



NVMe ideas - Command/Completion queues

Core "“K"

CommandQ —
CompletionQ —

N N
NVM Controller

\

A command queue and completion queue based structure

There are
separate special
Admin queues

e Small commands - 64 Bytes (no legacy stuff). Initially, 10 admin commands, and 3 I/0 commands (r/w/f)

16 bytes completion structure
64K queues, 64K deep, outstanding requests
A large number of interrupt mapping possible

https://www.slideshare.net/LarryCover/sz14-ssds002-100engf-nvme

Any possible mapping of command:completion queue possible based on the architecture

15
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In comparison, AHCI vs. NVMe

1.

4.

Aggregation vs Point-to-Point Architecture
a. AHCl is a single point of aggregation vs NVMe has point-to-point PCle lanes
b. Helps with high bandwidth and scalable performance

Opportunities to exploit device parallelism

a. HDDs are slow, and queuing up inside the device does not help much

b. NVM SSDs are fast, and have lots of parallel parts, inside device queuing helps
c. (Max) 64K queue, 64K deep (vs AHCI 32 ports/queues, 32 deep)

d. Support for multiple interrupts (NVMe) vs single interrupt to AHCI

Lightweight device interaction and streamlined shared data structures

a. 9device registers read/write (AHCI) vs 2 device register (NVMe) read/writes for a
command completion

b. Possibility to amortize command issuing over multiple commands in one dispatch
Possibility to multipath and networking over PCle (Ethernet)

https://sata-io.org/sites/default/files/documents/NVMe%20and%20AHCI %20 long .pdf 16
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Early prototyping (Chatham NVMe prototype)

Chatham NVMe Prototype
N R Linux*

Storage Stack

vzer 4 |\

Kernel = ‘

élock Layer

NVMe reduces latency overhead by more than 50%

Cores
Used for
e SCSI/SAS :6.0us 19,500 cycles 1M TOPs y
e NVMe :2.8 ys 9,100 cycles v
<_u 2.8 psecs
PCle removes the hardware/link overheads &=\
NVMe removes the protocol overheads enpneHce

https://nvmexpress.org/wp-content/uploads/2013-FMS-NVMe-Track.pdf

17
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NVM Express : Reduces software overheads

u Application OKernel other @ Block layer m Application @£ Kernel other

30% A @ Block layer B NVMe driver
35us of 125pus T

|
8% A 8 us of

25% A 7% -

20% - 6% 1

5%
15% - —

10% - 3% A

2% A
5% A

1%

Percentage of time spent in each ssoftware
section out of totoal I/O access latency

72ps of 14,295ps
SATA HDD SATA SSD NVMe SSD

e From HDD to SATA SSD the relative overhead of software is increased from 0.5% to 28%
e NVMe reduces the relative software overhead to ~7%

Xu and others, Performance Analysis of NVMe SSDs and their Implication on Real World Databases, ACM Systor 2015,
https://dl.acm.org/doi/10.1145/2757667.2757684.



https://dl.acm.org/doi/10.1145/2757667.2757684

NVM Express: Improves IOPS and bandwidth

/

Log y axis

1.00E+06 )
Maximum IOPS LO0E+07 7\ 0 imum BW
1.00E+05 70k 1.00E+06 -
>4
1.00E+04 OO0 1
1.00E+04 -
1.00E+03
1.00E+03 -
1.00E+02
1.00E+02 -
1.00E+01 1 00E£01. -
1.00E+00 . ' 1.00E+00 .
SATAHDD  SATA SSD NVMe SATAHDD  SATA SSD NVMe
e 750KIOPS in a single NVMe device!
e 3 GB/sec bandwidth (bounded by the PCle links)

Xu and others, Performance Analysis of NVMe SSDs and their Implication on Real World Databases, ACM Systor 2015,
https://dl.acm.org/doi/10.1145/2757667.2757684.
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NVM Express: I/0 latencies

& Device Time Nvme Driver Kernel @ User

AO\‘L\%]_ 00E+04 _ﬁ Rse:d Latency @ Write Latency {55
" Sms
\«OQO = 100 -
1.00E+03 - S
Z 80 -
=
3
1.00E+02 - = 60 -
§ 40 -
1.00E+01 - : 5
1.00E+00 +—F 0

SATA-HDD  SATA-SSD NVMe

1-3 orders of magnitude better read performance (in comparison to SATA SSD and HDD)
Similar random and sequential read/write latencies (we will see later, one is better than the other)

Xu and others, Performance Analysis of NVMe SSDs and their Implication on Real World Databases, ACM Systor 2015,
https://dl.acm.org/doi/10.1145/2757667.2757684.

20
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Today: NVM Express

One of the most popular and de-facto standard for M)
high-performance NVM storage devices
o ° — " EXPRESS

A comprehensive set of control, data command set,
semantics, and response

Constantly being updated to include the demands from
the industries and input from academia

In the project, you talk to a NVMe device using the
NVMe command set (ZNS command set uses the NVMe
command set)

21



The Linux storage stack - software (simplified)

User space applications (databases, key-value store, browsers, file and email servers)

Jread, write, open, stat, chmod (syscalls)

The virtual file system (VFS) I N

The page buffer
cache

Network-fs Pseudo FS Special FS Block-FS
(NFS, samba) (proc, sys) (tmpfs) (ext4, f2fs, brtfs) {

Kernel Linux Block Layer

Device drivers
(NVMe)

22



Linux Block 10: Introducing Multi-queue SSD Access on Multi-core Systems
(2013)

Linux Block 10: Introducing Multi-queue SSD Access on
Multi-core Systems

Matias Bjerling™ Jens Axboe'

“IT University of Copenhagen
{mabj,p bo)%@?ft,u.dk y

ABSTRACT

The 10 performance of storage devices has accelerated from
hundreds of IOPS five years ago. to hundreds of thousands
of IOPS today. and tens of millions of IOPS projected in five
years. This sharp evolution is primarily due to the introduc-
tion of NAND-flash devices and their data parallel design. In
this work. we demonstrate that the block layer within the
operating system. originally designed to handle thousands
of 10PS. has hecome a bottleneck to overall storage system
performance, specially on the high NUMA-factor processors
systems that are becoming commonplace. We describe the
design of a next generation block layver that is capable of
handling tens of millions of I0PS on a multi-core system
equipped with a single storage device. Our experiments
show that our design scales graciously with the number of
cores, even on NUMA systems with multiple sockets.

Categories and Subject Descriptors
D.1.2 [Operating Sy ]: Storage M Sec-

ondary storage: D.4.8 [Operating System|: Performance
measurements

General Terms
Design. Experimentation, Measurement. Performance.
Keywords

Linux. Block Laver, Solid State Drives, Non-volatile Mem-
ory, Latency, Throughput.

1 Introduction

David Nellans' Philippe Bonnet®
!Fusion-io

luiavhna dnell; } ionio.com
M
800k 20
= 08000
600k 45€000
g 400k
x 200k B
= —_— —
5502 503 8504 s50s
2010 201 2012

Figure 1: 10PS for 4K random read for five SSD
devices.

(e.g.. flash or phase-change memory [11. 6]) is transforming
the performance characteristics of secondary storage. SSDs
often exhibit little latency difference between sequential and
random 10s [16]. 10 latency for SSDs is in the order of tens
of microseconds as opposed to tens of milliseconds for HDDs.
Large internal data parallelism in SSDs disks enables many
concurrent 10 operations which. in turn, allows single de-
vices to achieve close to a million 10s per second (IOPS)
for random accesses, as opposed to just hundreds on tradi-
tional magnetic hard drives. In Figure 1. we illustrate the
evolution of SSD performance over the last couple of years.

A similar, albeit slower. performance transformation has
already been witnessed for network systems. Ethernet speed
evolved steadily from 10 Mb/s in the early 1990s to 100 Gb/s
in 2010. Such a regular evolution over a 20 years period has
allowed for a smooth transition between lab prototypes and
mainstream deployments over time. For storage. the rate of
change is much faster. We have seen a 10.000x improvement

23



Key challenges

In the early 2010, lots of hardware/protocol optimizations were happening

Two trends were evident

1. Performance of NVMe SSD (i.e., flash) was improving rapidly

2. Single CPU performance was stalled
a. Most gains came from multi-core / multi-socket systems

w M

&3 - 608000 =
o 600k 498000

S 400k

= 200k 50000 .

SSD 1 SSD 2 SSD 3 SSD 4 SSD 5
2010 2011 2012 24




The Linux 1/0 stack

The Linux Block Layer

Unified interface to application
and device drivers

Provides many common services like 10

buffering, scheduling, fairness,

accounting, error handling, etc.

An essential part of the storage I/0

Can the Linux Block I/0 layer scale on multi-core
machines to match the SSD performance?

Userspace
Process Process
A Z
S B a3

Kernel I libaio and others I
Y

. { Submit 10 |
Block Layer |

[ Submission/Completion J

| Staging (Merge, Reord., etc.) l . o
equest Queue

I Fairness Scheduling I

|' 10 Accounting ]
L

Block device specific driver

Status / Completion
Interrupt

Y

Single queue (e.g. SATA) capable hardware device

25



Performance evaluation of the block I/0

1_12'gm 1 socket 2 socket
1NI——————-"“--—”—---
750k
500k
250k
& 0
% 1 2 3 4 5 6 2 4 6 8 10 12
1_12'gm 4 socket 8 socket
™

750k
250k
0

5 10 15 20 25 30 10 20 30 40 50 60 70 80
Number of Cores

Performance collapses as the number of cores / socket increases (guesses?) 26




Key reasons

|

Local

Memory

1. Request queue locking /[ ﬂlﬁoﬁﬁ;’?ﬁﬁiﬁvehﬁézegf?
the single request queue becomes the single
point of contention in multi core machine
Local
2. Hardware interrupts W [Memen | Remte vemary
driver/stack was not ready to distribute load ssD cruo [

generated by interrupts on the cpu0

{

CPUN

Soft Interrupts

Request
Queue Lock

!

3. Remote Memory Access

Ownership

Acquire/Release

Cross socket memory access to issue and
complete a request, poor performance




Key proposals

Userspace
A two stage split multi-queue interface R R
(separation of concerns design principle) — —
P gnp P Keiiel [ libaio and others |
. [ Submit 10 |
SOftwa re Staglng Queues . Il Submission/Completion I\ ,J\ Block Layer
e Local to each core/socket — reduces contention and : : - "
Staging (Merge, Insertion
NUMA memory accesses l- , S ]
. . l Tagging ] > Per Core
e Hooks to provide OS/software services [ Faimess Scheduing | Software Queues
e Software manipulation does not need to sync [0 Accounting ]
between cores = . [ Hardware
Dispatch Queues
Hardware Dispatch Queues T
. Block device specific driver
e Any number of queues supported by the device ——
atus ompletion
e Use the queues close to the CPU core Interrupt TT v v
o HE|pS to use and distribute interru pts Single or multi-queue capable hardware device

o Interrupts/queue (simplified)



Significant baseline improvements

15M
12.5M 1 socket 2 socket 4 socket 8 socket
0 10M MQ
%7.5M SQ
- 5M ]
2.5M /
0 f—— /\_‘ —4—‘=
y 2 3 4 5 6 8 10 12 15 20 25 30 10 20 30 40 50 60 70 80
Number of Cores [}

e General improvements across the spectrum (but still)
o Raw is performance when the block layer is skipped

e Second socket leads to fall in performance for Single Queue (SQ)
o Coherence and locking
e Multiqueue (MQ) follows the performance of raw closely

What else can we optimize here? 29



Application-level I/0 submission

Userspace
. . . . . . Process Process
Optimizations in the application-level APl and
: : o ————
implementation (libaio) Kernel [ Tbaio and others |
[ | Subzit 10 |
o A glObal context ||St |0Ck [ Submission/Completion I\ /J\\ Block Layer
o Replaced by lockless list with CAS instructions | S0y erge lnssinian) |
e A completion ring based notification to the { S } ("1 0 Dlsoftware Queues
airness scneduling
User th read I 10 Accounting I
o Remove it T H - et
e Various shared variables throughout the
Sta C k Block device specific driver
o Reimplement them with per-core variables and S‘at“s,n’tf,?ﬂ;‘t"e“""ﬁ .
CAS I nStrU Ctio ns Single or multi-queue capable hardware device

General broader challenge: “An Analysis of Linux Scalability to Many Cores” (OSDI 2010), https://pdos.csail.mit.edu/papers/linux:osdi10.pdf



https://pdos.csail.mit.edu/papers/linux:osdi10.pdf

As a result ...

15M Raw
— MQ
12.5M s
10M Raw (Original)

MQ (Original)

7.5M
SM
2.5M
0

IOPS

Mg ®TEERE L LSRRy R Ry e e

10 20 30 40 50 60 70 80
Number of Cores

Managed to push IOPS close to 15 million IOPS

More importantly, made the Linux block layer scalable and ready for the future NVMe devices
31



When Poll is Better than Interrupt

Jisoo Yang

(jisco.yang | dave.b.minturn |

Dave B. Mintum

Frank Hady

frank.hady} (at) intel.com

Intel Corporation

Abstract

In a traditional block /O path, the operating system com-
pletes virtually all I/Os asynchronously via interrupts.
However. performing storage /O with ultra-low latency
devices using next-generation non-volatile memory. it
can be shown that polling for the completion ~ hence
wasting clock cycles during the /O - delivers higher
performance than traditional interrupt-driven I/O. This
paper thus argues for the synchronous completion of
block I/O first by presenting strong empirical evidence
showing a stack latency advantage, second by delineating
limits with the current interrupt-driven path, and third by
proving that synchronous completion is indeed safe and
correct. This paper further discusses challenges and op-
portunities introduced by synchronous I/O completion
model for both operating system kernels and user appli-
cations.

1 Introduction

When an operating system kernel processes a block sto-
rage /O request, the kernel usually submits and com-
pletes the 1/O request asynchronously. releasing the CPU
to perform other tasks while the hardware device com-
pletes the storage operation. In addition to the CPU

pass the kernel's heavyweight asynchronous block /O
subsystem, reducing CPU clock cycles needed to process
1/Os. However. a necessary condition is that the CPU has
to spin-wait for the completion from the device, increas-
ing the cycles used.

Using a prototype DRAM-based storage device to mimic
the potential performance of a very fast next-generation
SSD. we verified that the syncl model complet
an individual /O faster and consumes less CPU clock
cycles despite having to poll. The device is fast enough
that the spinning time is smaller than the overhead of the
asynchronous /O completion model.

Interrupt-driven asynchronous completion introduces
additional performance issues when used with very fast
SSDs such as our prototype. Asynchronous completion
may suffer from lower 1/O rates even when scaled to
many outstanding I/Os across many threads. We empiri-
cally confirmed this with Linux.* and examine the sys-
tem overheads of interrupt handling, cache pollution,
CPU power-state transitions associated with the asyn-
chronous model.

We also demonstrate that the synchronous completion
model is correct and simple with respect to maintaining
YO arderi ® I

When Poll is Better than Interrupt (2012)

Any guesses, why?
Faster may be, but better? How?
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The classic way of doing an 1/0 operation

Asynchronous 1/O (itis a loaded term)
e Software issues a request
e And then switches to something else
e (At some pointin future) Request completes and there
is an interrupt for notification

(o )
System cail User Process context
(read, write, ...)
User
Kernel
VFS + BIO VFS + BIO
stack stack
Device driver
command Wait (take a nap)
submission
. 4
(. N
Other context IRQ handler
(device driver)
& _J
a b
Hardware
Comm.:-.md
execution
\ 4

https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final 0.pdf
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The classic way of doing an 1/0 operation

Asynchronous 1/O (itis a loaded term)
e Software issues a request
e And then switches to something else
e (At some pointin future) Request completes and there
is an interrupt for notification

Time
Context
System call switch Return to user
e—Ta’— 1 Th —)|< Tu g

CPl:  ciisntiaiishmmm e o o o i —— G

user kernel: | user ' kernel | user

(P1) : (P2) : (P1)
Device: Device E E Interrupt

command

Td

For 4kB transfer, Ta =Ta' + Ta" ~4.8 usec, Td = 4.1 usec, Tb (sched) = 1.4 usec, Tu = 2.7 usec
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Challenges with the classical way

Device latencies are improving significantly
o 10s of useconds, overheads shifting from hardware to software

Scheduling and context switching have latencies comparable to device 1/0
o Does it make sense to context switch when the I/0 will be completing in that time?
System calls? (Can we do zero system call I/0? - lecture 11)
https.//www.usenix.org/legacy/event/osdi10/tech/full papers/Soares.pdf (OSDI 2010)

Interrupt generation and processing take time
o Interrupts destroy the current execution context
o Poor cache profile, and instruction pipeline flushing
o Interrupt storm / livelocks (high-performance networking problem in storage)

Gap in the load, results in CPU entering the energy saving “C” states, thus,
introducing latencies of 1-2 useconds
Can we do better?

35


https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Soares.pdf

Synchronous completion: Polling

Constantly poll to check if the command is completed

e In-place command completion (hence, synchronous in order)

e Better performance

( User Process context R
System call
(read, write, ...)
User
Kernel
Are you
done ?
& 4
(Other context )
\_ J
(s kY
Hardware GO
execution
& 2

https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final 0.pdf
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Asynchronous vs. Synchronous completion timeline

Where do the gains come from?

Application perceived I/0 latency

>

BIO stack Device driver

IRQ

(65 Sleep

fin

| Command execution

Application perceived I1/0 latency

Gain

>

(el BIO stack
Wake
=T

1
il

PO"ing | BIO stack Device driver Are you done ?
y

YVYVYY YVYVY VY

I Command execution

4

https://events.static.linuxfound.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final 0.pdf
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1/0 completion latency in usec

Performance : Sync. vs. Async. completions

14

12 A

10 -

M Hardware device

Operating system

.................. :. L
RS N RN DR, AR SRR - 2.90...... i
6.21 6.67 ae s
4.91 5.01 -

2 4 ... . B .......... R ............ S .......... . ........... ... .
1.47 1.42 i

4KiB 12B 4KiB 12B 4KiB 12B : L

: . ; 2 ' 2 1 2 3 4 5 6 7 8
Async Async Async Async Sync Sync Number of CPUs

(C-state)  (C-state)

As interrupts are not taken, less context switches —
results in better utilization of the CPU cycles (even
perhaps both of them use 100% of CPU cycles)

For a single I/0 latency
e (-State introduces latencies
e Syncis faster than the async
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When to use poll?

The answer to every programming question ever conceived

It Depends

The Definitive Guide

O RLY? @ThePracticalDev
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When to use Poll - The utility spectrum

Relative latency reduction over IRQ (%)

Like everything in systems, there is no all-good 656
optimizations. When to poll? o0 Nrest s i
e When device service time is comparable to

——=CS=1us

software overheads %0 —e—CS=15us
o Cost of scheduling 70 Cs=2us
o Cost of taking interrupts 60
o Device latencies 50
40
e Application overheads 55
o Can kernel figure out always when to 20
poll? How can application tell kernel to : Likely not
p0||? 10 NVM SSDs X , Disks, tape, optical, ...
. . o i
o B:fferNr?']V;]lrf\azzr(Tl]z_nl{[rlng) 0.1 1 10 100 1000 10000 100000
Typical device command service time (us)
Short answer: Measure and decide :-)
40
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In LinuXx

atr@atr-XPS-13:~$% cat /sys/block/nvme@nl/queue/io poll
1
atr@atr-XPS-13:~$ cat /sys/block/nvmeOnl/queue/io poll delay
-1

‘atr@atr-XPS-13:~s

Part of the mainstream kernel

e 1isenabled withio_poll
e Delay

o -1:classical spin looping
o 0:hybrid strategy, kernel will figure out the best way for you
o [any_value]. nanosecond time to delay between checking

e Itwould be an interesting thesis/research project to evaluate impact of
these parameters on the “application” performance
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Complexity

How to optimize your storage
1/0?

Multiple ways of doing 1/0
Queues

Interactions, signals, interrupts

Zebin Ren and Animesh Trivedi,

Performance Characterization of Modern Storage Stacks:

POSIX I/0, libaio, SPDK, and io_uring, CHEOPS 2023,
https://dl.acm.org/doi/abs/10.1145/3578353.3589545

https://atlarge-research.com/pdfs/2023-cheops-iostack.pdf

Application

r_n (1]
pread |o read Interface subm/t
S pwrlte aio wnte
g POSIX POSIX

i 1/0

§ read/write  asynchronous

Y O generic file read iter()
VFS

ﬂllulti-queue

kyber S\ & Py

maq-deadline

%&submlt bio(struct bio)

|o—e—> requests

bio_endio() "\

‘o

blk_mq_end_request()

= Hardware dispatdq

h queue

Pre core softwaﬁe queue

i

+ nvme_queue_rq(reqest)

requst-—)nvme command

NVMe drlver ' SQ CQ

nvme_process_cq()

@t interrupt

Device

J<

SPDK
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Implications of Fast NVM on Data Center

storage

MIHIR NANAVATI,
MALTE SCHWARZKOPF,

JAKE WIRES, AND

ANDREW WARFIELD,

COHO DATA

Non-volatile

Storag

or the entire careers of most practicing computer

scientists, a fundamental observation has

consistently held true: CPUs are significantly more
performant and more expensive than IO devices. The
fact that CPUs can process data at extremely high

we've been building them.
This assumption, however, is in the process of being

IMPLICATIONS OF
THE DATACENTER'S
SHIFTING CENTER

completelyinvalidated.

contributed articles

001:10.1145/3015148

Microsecond-scale I/0 means tension
and i

block a thread's execution, with the
program appearing (0 resume after the
load completes. A host of complex mi-

that will ;eed new latency-mitigating ideas,
including in hardware.

techniques make high
ble while supporting
his Intuee programming model Tech
Forder

vz gARRose, ux: SARTY DAVID) PATTRRSOM; AN

execution, and branch prediction. Since
nanosecond-scale devices are 50 fast,

Attack of
the Killer
Microseconds

THE COMPUTER SYSTEMS we use today make it easy
for programmers to mitigate event latencies in the
nd and millisecond time scales (such as
ses at tens or hundreds of nanoseconds
and dhk 1/0s at a few milliseconds) but significantly
lack support for microsecond (ps)-scale events. This
oversightis quickly becominga serious pruhlun for
prog g P , where

‘marily by hardware.

AL the other end of the latency-mit-
igating spectrum, computer scientists
have worked on @ number of tech-
niques—ypically_software based—to
deal with the millisecond time scale.
Operating system context switching is
a notable example. For Instance, when
azead() system call 1o a disk is made,

thread resumes execution sometime af-

easily outweighs the cost of two context
switches (microseconds). Millisecond-
scale devices are slow enough tht the
cost of these software-based mecha-
nisms can be amortized (see Table 1).
These synchronous models for in-
teracting with nanosecond- and milli-
second-scale devices are easier than the
altemative of asynchronous models. In
an asynchronous programming model,
the program sends a request to a device
and continue processing other work

Processor designers have developed multiple
techniques to facilitate a deep memory hierarchy

rates, while simultaneously servicing multiple IO devices, has N
e . efficient handling of microsecond-scale eventsis [ key insights
had a sweeping impact on the design of both hardware and becoming paramount for a new breed of 1 ey e
) g from datacenter m.l\\urkun., to fopdrispmemhemminopad
software for systems of all sizes, for pretty muchas long as ; » the first sidebar *Is the e e e e
Microsecond Getting _nuugh Respect?”). ® Existing system optimizations targeting
Raroreo e maecons s

that works at the d scale by ding
a simple synchronous programming interface to
the memory system. A load operation will logically

T M T " Laaid 22
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- Mihir Nanavati, Malte Schwarzkopf, Jake Wires, and Andrew Warfield. 2015. Non-volatile Storage: Implications of the Datacenter’s Shifting Center. Queue
13, 9 (November-December 2015), 33-56. DOI:https://doi.org/10.1145/2857274.2874238
- Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan. 2017. Attack of the killer microseconds. Commun. ACM 60, 4 (April 2017), 48-54. 43
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Historically

CPU have been improving (Moore’s Law and Multi Core scalability)

DRAM speeds have been improving (latency not so much)

FIGURE 1: PER-PACKET PROCESSING TIME WITH FASTER NETWORK ADAPTERS

b ot Gigabit  10GbE  40GbE  100GbE
ethernet  (1998) (2006) (2010) (20m)
(1995)

Network performance over time (2-3 oom)

FIGURE 2: PROGRESSION IN SPEED OF SCMS COMPARED TO NETWORK ADAPTERS

— storage
— network

fast Gigabit/  10GbEl  40GbEl  100GbEI
ethernet/  spinning SAS NVME  NVDIMMs
spinning disk flash (2010) (2011)

disk (1998) (2006)

(1995)

Storage performance over time (4-6 oom) 44



Trends in the data center

1. The age-old assumption that I/0 is slow and computation is fast is no longer true
a. this invalidates decades of design decisions that are deeply embedded in today's systems
b. Examples: use caching, prefetching, trade CPU for I/0 (compression?)

2. The relative performance of layers in systems has changed by a factor of a thousand times over a
very short time (this has never happened in computing before!)
a. this requires rapid adaptation throughout the systems software stack
b. Examples: PCle/NVMe storage that exposed overheads in the software stack

3. Piles of existing enterprise datacenter infrastructure—hardware and software—are about to become
useless (or, at least, very inefficient)
a. SCMs require rethinking the compute/storage balance and architecture from the ground up
b. Example: moving MySQL from SATA RAID to SSDs improves performance only by 5-7x, the raw
devices might offer 10-100-1000x times better performance
c. Foryour RocksDB project and how to integrate that on ZNS?
45



A balancing act: Balanced Systems

Are all resources utilized?

Wast ney if idl
Can all resourced be occupied? aste of money if idle

CPU enough? DRAM enough?

NVM

CPU

Is systems/cloud software capable DRAM

of utilizing and scaling all
resources

Is this the right machine for the
placement of the workload

<—— Is workload capable of
H Network utilizing all resources?

It is an open-research problem
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What you should know from this lecture

e Whatis NVM Express and why it was developed

e What are the main feature of NVM Express

o Multiple, deep queues
o Memory mapped I/0 submission and completion

e What are the challenges with the scalability of the block layer on
multi-core systems

e What is synchronous (poll) vs. asynchronous completion
o  Why would you poll on a storage stack

e What is Asynchronous I/0 stack - what did they propose and why it was
beneficial
e Changing trends inside a data center
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Backup (not a part of the course)
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Asynchronous I/0 Stack: A Low-latency Kernel I/0 Stack for Ultra-Low
Latency SSDs (2019)

Asynchronous I/0 Stack: A Low-latency Kernel I/0 Stack for
Ultra-Low Latency SSDs

Gyusun Lee?, Seokha Shin" ¥, Wonsuk Song?, Tae Jun Ham¥, Jae W. Lee?¥, Jinkyu Jeong®
" Sungkyunkwan University, §Seoul National University
{gvusun.lee, seokha.shin, wonsuk.song]@csi.skku.edu, {taejunham, jaewlee} @ snu.ac.kr, jinkyu@ skku.edu

Abstract

Today's ultra-low latency SSDs can deliver an I/O latency
of sub-ten microseconds. With this dramatically shrunken
device time, operations inside the kernel I/O stack, which
were traditionally considered lightweight, are no longer a
negligible portion. This motivates us to reexamine the stor-
age /O stack design and propose an asynchronous /0 stack
(AIOS). where synchronous operations in the I/O path are
replaced by asynchronous ones to overlap I/O-related CPU
operations with device I/O. The asynchronous I/O stack lever-
ages a lightweight block layer specialized for NVMe SSDs
using the page cache without block I/O scheduling and merg-
ing, thereby reducing the sojourn time in the block layer. We
prototype the proposed asynchronous I/0 stack on the Linux
kernel and evaluate it with various workloads. Synthetic FIO
benchmarks demonstrate that the application-perceived I/O
latency falls into single-digit microseconds for 4 KB random
reads on Optane SSD, and the overall I/O latency is reduced
by 15-33% across varying block sizes. This I/O latency re-
duction leads to a significant performance improvement of
real-world applications as well: 11-44% IOPS increase on
RocksDB and 15-30% throughput improvement on Filebench
and OLTP workloads.

One way to alleviate the I/O stack overhead is to allow user
processes to directly access storage devices [6.16,27.28.49].
While this approach is effective in eliminating I/O stack over-
heads, it tosses many burdens to applications. For example,
applications are required to have their own block manage-
ment layers [49] or file systems [15.43,49] to build useful
/O primitives on top of a simple block-level interface (e.g..
BlobFS in SPDK). Providing protections between multiple
applications or users is also challenging [6. 16.28.43]. These
burdens limit the applicability of user-level direct access to
storage devices [49].

An alternative, more popular way to alleviate the I/O stack
overhead is to optimize the kernel I/O stack. Traditionally,
the operating system (OS) is in charge of managing stor-
age and providing file abstractions to applications. To make
the kernel more suitable for fast storage devices, many prior
work proposed various solutions to reduce the I/O stack over-
heads. Examples of such prior work include the use of polling
mechanism to avoid context switching overheads [5.47], re-
moval of bottom halves in interrupt handling [24.35]. proposal
of scatter/scatter I/O commands [37.50]. simple block I/O
scheduling [3,24], and so on. These proposals are effective in
reducing I/O stack overheads, and some of those are adopted
by mainstream OS (e.g.. I/O stack for NVMe SSDs in Linux).
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What are the Challenges

A new class of ultra-low latency devices
e Optane SSDs, Samsung Z-SSD
e <10 usec latencies, 3+GB/s bandwidth

The Ultra-Low Latency SSD
SAMSUNG Z-SSD

Pressure on the software stack to deliver
performance, do you get the raw device latencies when

doing 1/0?
e Understand that software and optimizations for 100usec
will look very different than optimizations for 10usec

Polling helps to eliminate the context switch overheads
between the the time we issue an I/0 request to the
device and we get a response ...

But what is happening before that?



Quantify the Problem

o | SATASSD ] 8.15%
S | NVMe SSD E 1 moser
é % 1 24.02% 6.17% B Kernel
o Optane SSD 37.60% ODevice
) SATA SSD \
Q é‘ NVMe SSD ) ] 29.80% 1.63%
< g AR ] 35.44%
£ Optane SSD ] 35.54%
(I) 1 b 210 310 46 510 66 710 8]0 Qb 1 60

Latency (us)

Ultra-low SSDs like Z-SSDs and Optane SSDs have
e Much smaller device-time for reads
e Smaller device-time for writes

Optane SSDs have 50-50 split between hardware and software time, can we do better in software?
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The Linux Storage Stack - Software (simplified)

User space applications (databases, key-value store, browsers, file and email servers)

Jread, write, open, stat, chmod (syscalls)

The virtual file system (VFS) I N

The page buffer
cache

Network-fs Pseudo FS Special FS Block-FS
(NFS, samba) (proc, sys) (tmpfs) (ext4, f2fs, brtfs) {

Kernel Linux Block Layer

Device drivers
(NVMe)
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Deeper Dive on the read Path

Layer % in kernel time
VFS + Page cache
e Missing page lookups VFS 9-10.8%
e Page allocation
File system 4.5-12%
File system N
e LBA lookup Block layer 26-28.5%
e Block I/0 (bio) alloc
e Submit bio . _ . NVMe driver 10-11%
e Page cache insertion (atomic) J
Block layer b Scheduling 25-41.5%
e Scheduling, merging )
NVMe drive
e DMA mapping/unmapping

[ Ultra-low latency (ULL) devices
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Block Layer Overheads

A lots of steps inside the block layer

e Dynamic allocation of struct bio
o  Separate slab cache
e Transformation of a bio (kernel) to an
I/0 request (device)
e Passing through software and
hardware queues (multiQ)
e |0 descriptor object and preparing a

DMA request for transfer

o Memory mapping/unmapping

Lots of step (are they all necessary?)

Dynamic objects in the shaded areas

submit_bio()

\\

\

Ay

L
[L[ bio: LBA, length, pages

AN
v
——————————————

@ @ @ Per-core SW Queues
/V
@ @ HW Queues

nvme_queue_rq()

Multi-queue Block Layer

N

request: LBA, length b10(s)

A

\

Device Driver
iod: sg_list, prp_list ]
i

/

ag
CMD

@ @ NVMe Queue Pairs
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Timeline Comparison - Vanilla vs. Proposed read Path

Page Alloc 0.19us LBA Loolgup 0.09us DMA Unmap 0.23pus Copy-to-user 0.21ps
ache | = 1[) Context Request ' Context -
CPU E_ Big Sehok - Submit | Switch Jf | - Completion [{|| Switch
0.30ps 0.33us 0.72 ps 029 us  0.37 ps 1/O Submit lnten'uptT 0.81ps 0.95ps
DEVICE -===--==-===m==mmmm oo oo e Device Time frmmmme el
7.26ps
Total I/O Latency (12.82us)
(a) Vanilla read path
LBA Lookup 0.07ps Page Alloc 0.19uys Lazy DMA Unmap 0.35ps Copy-to-user 0.21ps
4 R 1
CPU - Cache Context f}f |___| LBIO Context Wl | |
Lookup || | Switch | Completion [ Switch
0.30ps” l 0354s  DMA Map 0.29 ps 1 0.65ps 0.95ps
Device -3¢ ------=- H Device Time e R R R T
Pagepool Alloc LBIO Submit 7.26ps
0.016us 0.13ps

Total I/O Latency (10.10ps)

(b) Proposed read path
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How to Make it Happen?

Lightweight block 1/0 layer (or LBIO)

e Simple, but very interesting idea

e Preallocate a bunch of object
o  Single Ibio structure containing all information
o Pre DMA-mapped page pool for I/0
o Reduce locking and scheduling by mapping 1:1
pages to CPU cores and NVMe queues
m Core x queue dimension

The idea is quite general and is used in many
other systems like high-performance
networking (RDMA - preallocation of buffers)

submit_1lbio()

N Lightweight Block 1/0 Layer

Core0
Core 1

lbio: LBA, length,

DMA-mapped

Page Pool

nvme_queue-1bio()

Tag 1bio Device Driver
e [y ]
CMD

@ @ NVMe Queue Pairs
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Optimized Lightweight Block layer

Ibio big: ==~ = Ibio bigy s «
1.0 . T 1.0 l : ——

E/z 0.8 5 0.8 (: .

2 0.6 .’ X 0.6 /
z 04 ', . 0.4 !
8 02 / 8 02

0.0 : & . 0.0 — 1

0 0.5 1 L5 2 O 1 2 3 4

Latency (us)

Latency (us)
(a) 4 KB random read (b) 32 KB random read

0.18-0.60us I/0 submission latency in Ibio

o
83.4%-84.4% shorter than the original block layer




Rest of the File read Path

1. How to do a fast file offset — LBA lookup? Not all
mappings might be in memory and file system needs
to do further 1/0 to look them up

a. Solution: when a file is open, preload the whole mapping in the
memory
b.  Memory consumption? Can be done selectively

2. How to manage DMA-mapped page pool?
a. Solution: pick one, start using it, but asynchronously add
another page
b.  Solution: once I/0 is finished, only unmap lazily when the new
page is needed

3. Atomic page-cache insertion before 1/0

a. Solution: well...there will be duplicate work, and we will discard it

open

file

.

Critical path

Full file offset
to LBA mapping

asynchronously

—
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Performance: Microbenchmark and RocksDB

Latency (us)

120

100 |

40 1

Vanilla &
- AIOS-poll % @
0 500 1000 1500

Bandwidth (MB/s)

500

400 |
2300
& 200

100
0

Vanilla
AIOS =

1 2 4 8161 2 4 8 16

Z-SSD Optane SSD
# of threads

AIOS results in scalable latency gains with higher bandwidth
RocksDB random read performance is improved by 11-32%
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