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The layered approach in the lectures

Distributed Systems L9-L10

L5 Applications (key-value store)

L4 File systems

( L8
Software implication in the block layer Specialization

L2 New host interfaces (NVMe protocol) L6
{ Byte-addressable,
L3 { persistent memories
L1 New devices (Flash)




Networking Storage

Question 1: why do we want to network storage?

Question 2: what do you think when | say networked storage? (ever heard of
NAS, SAN, FC, iSCSI?)

Remote servers

1 ,.




Server and Workloads

What do we have inside a single server: CPU cores, DRAM, and some storage
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Server and Workloads

What do we have inside a single server: CPU cores, DRAM, and some storage




Server and Workloads

What do we have inside a single server: CPU cores, DRAM, and some storage
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storage left




Server and Workloads

What do we have inside a single server: CPU cores, DRAM, and some storage

Bl -- /\ App I__II__|
[] - |
After this app, we have 1 core, 1 DRAM, and 4

storage left

L App
What happens if an application needs Issues
e 3 coresonly, or5cores? e Low resource utilization
e 1.1 TB of NVM or only 500 GB? e High cost of running infrastructure

e 128GB of DRAM, or 512 GB of DRAM o Total cost of ownership (TCO)



Idea: Disaggregation (Storage)

Some locally attached storage
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A remote location full of storage

NVM
Storage

NVM
Storage

Slice and give out storage capacity from a remote location (dedicated storage servers)

The idea is not new : this is how even HDD based storage systems are also deployed. Benefits:
on-demand device capacity provisioning, no underutilization
(ii) centralized provisioning, and management, a single point of upgrade to all

(iii) low cost TCO, as systems resources are fully utilized (with a mix of workloads)

(i)




How to Access Remote Storage - SAN

|
Server [ Application

File system

Block layer

iSCSI - a network protocol to
access remote storage using
SCSI command set

@ Initiator

IP

Targets

; SCSI Optional DATA Fos

Storage Area Network (SAN)

e One of the most popular way of deploying “remote” block storage

e Block storage size can be anything, configured on demand (persistent or ephemeral)

e Deployable on the common data center networking infrastructure: Ethernet, TCP, IP
There are other ways to do SAN as well like ATA over Ethernet (AoE), Fiber Channel (FC), etc.

IP Storage Protocols: iSCSI,
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How to Access Remote Storage - NAS

| Server-side file

Server [ Application system
File system Eg NFS, CIFS, SMB - these are
a— file level protocols

\»

open, close, read, write,
stat, flush, etc.

Network Attached Storage (NAS)

e Deployment abstraction is a file
o can be ajust a point-to-point file system (NFS), e.g., https://www.rfc-editor.org/rfc/rfc1813
o ashared, parallel file system (like GPFS, GlusterFS, Ceph) running on distributed block
devices
e Capacity provisioning and scaling is done at the file system level
In the cloud, similar example would include Hadoop FS
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Accessing Remote Storage
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iSCSI

<«+— NAS —»
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NAS and iSCSI Technology Overview,

https://www.snia.org/sites/default/education/tutorials/2007/fall/storage/WolfgangSinger %20NAS and ISCSI Technology.pdf

NAS on SAN
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How to Access Remote Storage - Object

Server [ Application

Object store APIs A key value store

o Get, put, delete

A key value store

A key value store

If not being restricted to files or blocks for storage, objects are flexible (flat namespace,
simple locking), scalable (can be distributed over multiple servers), and can support
multiple consistency models

Examples: é redis

Object Storage 101 Understanding the What, How and Why behind Object Storage Technologies,
https://www.snia.org/sites/default/files/Object Storage 1071.pdf

Microsoft Azure
Blob Storage 01



https://www.snia.org/sites/default/files/Object_Storage_101.pdf

What is the Basic Challenge Here?

Software Time Network Time Storage Media Time

Total operation latency. (Often) Mostly dominated by the storage media access time,
that was HDD performance

Userspace Applications Userspace Applications

| iSCSI Target | GFS2 block interface | GFS2 |

[Block /0 Stack | Blockl/Ostack | /" boundary ™ [Block IO Stack_]

[ PCleDrver | Net Stack iSCS1 Initiator [Fcomer ]
(0 05
HW . v HW L
[_PCleBlockDev || NIC | | NIC | [FCBlock dev | [ FC Adapter |
h
4
[ Ethernet | | Fibre Channel |
(a) (b)

Adrian M. Caulfield and Steven Swanson. QuickSAN: a storage area network for fast, distributed, solid state disks. In ISCA 2013.



What is the Basic Challenge Here?

Software Time

Network Time

Storage Media Time

Total operation latency. (Often) Mostly dominated by the storage media access time,
that was HDD performance

Userspace [ Applications ]~ userspace [_Applications ]
| iSCSI Target | GFS2 bodkinkerface [_GFs2 |
|Block 70 Stack | _BLoSk_I/_O_St_aEk_ _4_/ boundary \>‘_B|_osk_l/_0_5t_a5k_ ]
IW' Net Stack iSCS| Initiator [_FCDriver ]

h

0s 0s

HW A HW v
[ PCleBlockDev [ NIC ] [ NIC | [ FCBlock dev | [ FCAdapter |

h

4
[ Ethernet | | Fibre Channel |
(a) (b)

As storage media access time improved, software and network
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iSCSI Disk
iSCSI Flash

time became the new bottlenecks - what can we do about them?

Adrian M. Caulfield and Steven Swanson. QuickSAN: a storage area network for fast, distributed, solid state disks. In ISCA 2013.
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Understanding iSCSI with Disaggregated Flash

1

——Flash capacity utilized
—Flash read throughput

Flash Storage Disaggregation

city and bandwidth are often underutilized as it is difficult
to design servers with the right balance of CPU, memory
and Flash resources over time and for multiple applications.
This work examines Flash disaggregation as a way to deal
with Flash overprovisioning. We tune remote access to Flash
over commodity networks and analyze its impact on work-
loads sampled from real datacenter applications. We show
that, while remote Flash access introduces a 20% through-
put drop at the application level, disaggregation allows us
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to make up for these overheads through resource-efficient v S H
scale-out. Hence, we show that Flash disaggregation allows o = $ =
scaling CPU and Flash resources independently in a cost b * Month 2015 G
effective manner. We use our analysis to draw conclusions
about data and control plane issues in remote storage. Figure 1: Sample resource utilization on servers hosting a Flash-

A 3 S based key-value store service at Facebook. normalized over a 6
g)aj;e‘gan]espa:fd Sub]ulEDe:'cnPle H.3.4 [Systems and month period. Flash and CPU utilization vary over time and scale 0 T T T T T
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according to separate trends.
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General Terms Performance, Measurement 2
Month in 2015

Keywords Network storage, Flash, Datacenter

that generate web-page content use PCle Flash. Similarly,
1. Introduction LinkedIn reports using PCle SSDs to scale its distributed

Flash is i ingly popular in d; of all scales as it k lue datab Project Vold t[45]. to process over

e Gt e b e TR . S s i, i, of Under utilization of resources

Specifically, PCle-based Flash devices offer 100,000s of 10 = A
o A Elach i dificult b R




Deployment Setup with Disaggregated Flash

Datastore Tier

Application Tier
get(k)
put(k,val)
A
Sersgrs .
o EEEE——

(a) Direct-attached (local) Flash

Datastore Service

Key-Value Store

NIC

CPU

RAM

Flash

Software

Hardware

Application Tier

App
Servers

Datastore Tier

get(k)
put(k,val)

TCP/IP

iSCSI

(b) Disaggregated (remote) Flash

Datastore Service

Key-Value Store

NIC

CPU

RAM

read(blk); write(blk, data)

Flash Tier

ul

I Remote Block Service |

[nic]
(=]

Flash

Software

Hardware

Software

Hardware

17



ISCSI Processing (+Networking) in Linux

e Initiator and Target iSCSI terminology
e iSCSI become a high-level protocol on top
of conventional TCP/IP processing

Application Storage Device
A i
\ 4
A
File System SCSI Underlying
g Driver
A
SCSI Upper Driver v
' Target
Initiator i
e A
Network Protocol Netwosr;:;otocol
Stack A
v v
Networks

TP

¢ Retrans
Timer

_—
ip_input.c ;

IP processing

Network device, SoftIRQ processing

For more details, see Advanced Network Programming,
(Bsc, 3rd year Programming Minor course)

https://the-linux-channel.the-toffee-project.org/index.php?page=3-links-linux-kernel-network-stack-and-architecture
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Understand Network Optimizations

250

200

150

100

IOPS (thousands)

50

B Baseline

1 tenant

3 tenants

6 tenants

: Flash capacity

Server contain Dual socket Xeon
processors, 64GB RAM, and network
connection of 10 Gbps between
tenants (i.e., initiators, datastores) and
the iSCSI target

Local performance of flash is at 250K
IOPS (random 4kB I0PS)

At 10.5K IOPS iSCSI single client

performance - bottleneck: CPU
performance at the target

19



Understand Network Optimizations

IOPS (thousands)

250

200

150

100

50

Multi-process
M Baseline

1 tenant

3 tenants

6 tenants

Optimize network processing
scalability

By default iSCSI uses 1 request
processing thread per session

Use multiple threads per session to
leverage multicore systems (use 6 out
of the 8 cores available, why?)

Almost 4-5x gains

(not shown) With 8 tenants it can do
250K (device bounded)
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Understand Network Optimizations

250

200

150

100

IOPS (thousands)

50

NIC offload
71 Multi-process
B Baseline

1 tenant

3 tenants

6 tenants

Optimize network offloading
Enable TSO and LRO offloading

TCP segmentation offloading (TSO)
Large receive offloading (LRO)

These network controller features help
to reduce per packet overheads by
coleasing multiple 1500 bytes packets
into a large segments (~64kB)

21



Understand Network Optimizations

250
B 1RQ affinity

JJumbo frame
200 4 ENIC offload
Multi-process
B Baseline

150

100

IOPS (thousands)

50

1 tenant

\ \\>\\\\\}\>\\\\\\\\\\
200

3 tenants

6 tenants

Optimize network offloading
Enable jumbo frames and IRQ affinity

Jumbo frames: default Ethernet frames
are 1500 bytes, jumbo frames 9000
bytes

— Help to reduce per packet
overheads

IRQ affinity is used to distributed

interrupts from NICs to all cores for
scalable processing

22



Application-Level Performance

1

0.7 4

0.3 A

Run RocksDB on disaggregated flash -
devices 08
Remote flash does increase the 95th o8
percentile latency by 260us 8" |
e Is this acceptable? Depends upon 55
the application. If your SLOs are 01 4

in mseconds then yes
o FB’'s use-cases are in mseconds

=e=|ocal

=e=remote

600
Client Read Latency (us)

800

1000

e |Iftheyarein 100 useconds - No

Unloaded latency

What happens when multiple tenants share flash devices over the network?
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Multi-Tenancy Loaded Latency
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Comparison points: local (when each tenant has its own local flash) vs. remote when shared between 2

(left) and 3 (right) tenants

Observations: QPS is degraded by ~20%, but tail suffers significantly as we increase multi-tenancy
Left figure 2x application flash sharing, right 3x applications- notice the tail latencies

24



When does Disaggregation Make Sense?

Let's do a first-order approximation for the benefits of disaggregation

B GB, IOPS, QPS, L GB: IOPS,
Cdi’r‘ect = Inax (GBS’ IOPSS’ QPSS> . (f + C) Cdzsagg = Imax (GBS 3 IOPS. (f + 5) +

Maximum capacity required

Maximum capacity per machine Only flash requirements
- Multiplied with the cost of flash

+ disaggregation overheads (20%)
Sum of flash + compute capacity in a single server

o Completely separate scaling of
What are the minimum number of servers compute requirements

needed to support an application?

QPS,
QPSS

):
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When does Disaggregation Make Sense

We
L0 40%  If all balanced
(,0“\90 0{\0“5 2 then pay the price
\C © . .
099\\ & 30%  Of disaggregation
(®)]
£
3
%5 20%
Yy
‘D
c
9 10%
= tor
2 age o,
: o Wbl Ven
g- 0% Caf/o /75
3
Perfectly balanced -10%
system
2 4 6 8 10
When does disaggregation makes sense: when compute and storage demands scale at a %

different rate (which in real world happens often)



What are the Challenges with Storage Disaggregation

1. Come up with a better protocol than iSCSI? (hint: we did already for locally

connected flash)

2. What can we do to improve multi-tenancy for disaggregated flash?

3. What kind of joint network and storage optimizations we can do to
decrease the software cost of accessing remote storage?

4. Come up with a better remote data access API than just simple block,
files, or objects?

5. Very active area of research!

And many other variants of these themes, let's start with a better protocol

27



Faster Storage Needs a Faster Network

We are seeing networking performance improve
from 100 Gbps to 200 Gbps and 400 Gbps

They can deliver < 1-10 usec latencies
to access remote DRAM buffers

New ways of doing network operations like RDMA
enabled networks like InfiniBand, iWARP, RoCE

e Allows network processing inside the network controller (not the CPU)

How do we leverage the performance of these networks with storage?

28



NVM Express over Fabrics (NVMe-oF)

NVM Express

The Block Layer

e Command and completion queues

NVMe Transport Layer

e PCle directly mapped queues

e Light-weight protocol

NVMe over Fabrics is a networked extension

of this idea H

What is the “Fabrics” here?

It is an umbrella term to cover high-performance
networks like RDMA networks

NVMe NVMe Fabric
Local Initiator
NVMe
Device
|
Going over high

%

Performance network



Remote Direct Memory Access (RDMA)

A Userspace networking technology, applications have

Directly mapped RX/TX queues in the userspace

Can execute send/recv commands

Can execute remote memory read/write operations

Poll or interrupt driven completion notifications

All networking processing is offloaded to the hardware (Network controller)

The interesting thing for us here is that RDMA is also (i) a queue-based; (ii) post
commands; (iii) poll for completion - type network operation

Animesh Trivedi, Patrick Stuedi, Bernard Metzler, Roman Pletka, Blake G. Fitch, and Thomas R. Gross. 2013. Unified high-performance I/0: one

stack to rule them all. In Proceedings of the 14th USENIX conference on Hot Topics in Operating Systems (HotOS'13). USENIX Association, USA, 4.
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RDMA Operations

1. Allocate 2. Allocate data 3. Recv a message 4. Get completion 5. close
memory buffers  and control queues notification

@ @ = recvbtﬂ‘er'c' DONE diSCo_nnect
ol = >N

user-space

31



RDMA: Two-Sided Send Recv Operations

Client posts a receive buffer
(pink)

Server posts a receive buffer
(cyan)

Client sends a buffer to the server
(orange)

Server’'s NIC receives the buffer
and deposit it into the cyan buffer
NIC notifies the server

Server prepares a response and
send back the purple buffer
Client NIC receives the purple
buffer and deposit it into the pink
buffer

NIC notifies the client

Client 8 =S§rver
DRAM CPU DRAM CPU
I / /3
: NIC e NIC =5
| —
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RDMA: One-sided Read Operation

Hey! Your content is stored in the bu
‘raddr’ (+ a tag, called steering tag or Stag)

ffer at

T

Client

Server

DRAM
— laddr

CPU

DRAM
raddr ——

CPU

_____

_____




RDMA: One-sided Read Operation

Client: READ remote memory
address (raddr) to local address
(laddr)

Client: posts READ request

Server: read local (raddr) - local
DMA operation

Server:; TX data back to client NIC

Client: local DMA to (laddr) buffer
in DRAM

Client: interrupt the local CPU/OS
to notify completion about the
client's READ operation

Client
DRAM CPU DRAM
B | odr raddr =<1
s
2 NIC NIC

RDMA operations are like remote “DMA” -

defined for specific remote memory locations




NVMe-oF = RDMA + NVM Express

Client /dev/nvmen1 2. NVMe command Server
(initiator) Capsule processing (target)

4. Transmit response 1
capsule back
TR \v RDMA

Remote
Network Network NVMe Device
Controller < > Controller

High-performance Network, 100 Gbps Ethernet

1. Post NVMe
command
capsule

At no point in time we have to use any legacy protocols like SCSI, or socket/TCP network transfers ..



NVMe-oF Write

NV
NVMe e RNIC
Initiator Tar
S~—
Post Send (CC)
e
\
Send — Command Capsule
ek T = g
- Ietion’ —_ Completion
o

Post Send —

l&-(Read data)

RDMA Read
Read response first
Read response last
\>\

Completion

‘_Post Send (RC)
Send — Response Capsule
o
Completion

Me
get

Allocate memory for data

Register to the RNIC

Shared common buffer

Post NVMe command
Wait for completion

Free allocated memory
Free Receive buffer

.
A

v v v A
Ethernet Storage Fabrics Using RDMA with Fast NVMe-oF Storage to Reduce Latency and Improve Efficiency,

https://www.snia.org/educational-library/ethernet-storage-fabrics-using-rdma-fast-nvme-storage-reduce-latency-and-improve

for network and storage
- Use one-sided RDMA
operations
36
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NVMe-oF Read

NVMe  gpnic Rnie  NVMe

Initiator Target

P
Post Send (CC)
b

Send — Command Capsule !

—
. I~ 2
- Yot Completion

Completion™ |

Post NVMe command

Wait for completion
Post Send —] Free receive buffer

l&-(Write data)

Write first‘/"post Send (RC)

Writelast— |

o

= Ack— — o _—
Send — Response Capsule PP~

i) Completion
e
Completion
v v v v

Ethernet Storage Fabrics Using RDMA with Fast NVMe-oF Storage to Reduce Latency and Improve Efficiency,
https://www.snia.org/educational-library/ethernet-storage-fabrics-using-rdma-fast-nvme-storage-reduce-latency-and-improve
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Latency [usec]

NVMe-oF Performance

—+—DAS Avg clat (us) —a— NVMe-oF Avg clat (us) —=—iSCSI Avg dat (us) RN = DAS
—e— DAS 95 percentile —a= NVMe-oF 95 percentile —=— iSCSI 95 percentile
v i [ NVMe-oF 32 cores
2,000,000
1,000 - &= NVMe-oF 16 cores
7 &
800 1,500,000 ZZZINVMe-oF 8 cores
2 [1111iSCSI 32 cores
600 o
1 1,000,000 = ===iSCSI 16 cores
400 —_ %
1 == v774iSCSI 8 cores
L 500,000 —7/ ~8—-NVMe-oF CPU%
0 . , . , ‘ :—_/ —4—iSCSI CPU%
0 500,000 1,000,000 1,500,000 2,000,000 2,500,000 = /
10PS

In comparison to iSCSI, NVMoF provides performance very close to a locally attached storage

Zvika Guz, Harry (Huan) Li, Anahita Shayesteh, and Vijay Balakrishnan. 2018. Performance Characterization of NVMe-over-Fabrics 38
Storage Disaggregation. ACM Trans. Storage 14, 4, Article 31 (December 2018), 18 pages.



NVMe-oF Latency Performance
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NVM over Fabrics

Host Side Transport Abstraction

p————o
o=V

Is the dominant and standard
way to deploy networked flash

InfiniBand

7]
c
c
1]
<=
o
)
S
)
L

Supports various high-performance
Networks like RDMA

0
0]
o
-
o
X
w
O
o

Controller Side Transport Abstraction

o
-

e New specification on TCP/socket
is now also available (not offloaded)

- - -

NVMe SSDs

|s constantly being updated to
accommodate new changes

Thesis (available): Understanding and optimizing NVMoF/TCP (+scheduling QoS)

https://www.dolphinics.com/solutions/nvme _over pcie fabrics.html and 40
https://nvmexpress.org/welcome-nvme-tcp-to-the-nvme-of-family-of-transports/
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Thinking outside the Box

NVMe-oF is equivalent to iSCSI (hence, a SAN solution)

RDMA allows to read/write remote memories directly

Quite popular inside data center due to its performance to build

Key-value stores and caches
Transaction systems

File systems

Distributed data structures
Consensus and ordering

Can we think of extending RDMA operations to directly access Flash location?

client

server

\

>

flash
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FlashNet: Building a Unified Network/Storage Stack (2018)

FlashNet: Flash/Network Stack Co-Design

ANIMESH TRIVEDI, NIKOLAS IOANNOU, BERNARD METZLER, PATRICK STUEDI,
JONAS PFEFFERLE, and KORNILIOS KOURTIS, IBM Research, Zurich, Switzerland
IOANNIS KOLTSIDAS, Google

THOMAS R. GROSS, ETH Zurich, Switzerland

During the past decade, network and storage devices have undergone rapid performance improvements,
delivering ultra-low latency and several Gbps of bandwidth. Nevertheless, current network and storage stacks
fail to deliver this hardware performance to the applications, often due to the loss of I/O efficiency from
stalled CPU performance. While many efforts attempt to address this issue solely on either the network or the
storage stack. achieving high-performance for networked-storage applications requires a holistic approach
that considers both.

In this article, we present FlashNet, a software I/O stack that unifies high-performance network properties
with flash storage access and management. FlashNet builds on RDMA principles and abstractions to provide a
direct, asynchronous, end-to-end data path between a client and remote flash storage. The key insight behind
FlashNet is to co-design the stack’s components (an RDMA controller, a flash controller, and a file system)
to enable cross-stack optimizations and maximize I/O efficiency. In micro-benchmarks, FlashNet improves
4kB network I/O operations per second (IOPS by 38.6% to 1.22M, decreases access latency by 43.5% to 50.4ys,
and prolongs the flash lifetime by 1.6-5.9x for writes. We illustrate the capabilities of FlashNet by building
a Key-Value store and porting a distributed data store that uses RDMA on it. The use of FlashNet’s RDMA
API improves the performance of KV store by 2x and requires minimum changes for the ported data store to
access remote flash devices.

CCS Concepts: « Information systems — Storage network architectures; Flash memory: - Networks
— Network performance evaluation; - Software and its engineering — Operating systems;

Additional Key Words and Phrases: RDMA, flash, network storage, performance, operating systems

ACM Reference format:

Animesh Trivedi, Nikolas Ioannou, Bernard Metzler, Patrick Stuedi, Jonas Pfefferle, Kornilios Kourtis, Ioannis
Koltsidas, and Thomas R. Gross. 2018. FlashNet: Flash/Network Stack Co-Design. ACM Trans. Storage 14, 4,
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Number of Steps to Access Remote Data

1600
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0

K IOPS
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224 718
Spec Block iSCSI KV  NFS HDFS

client application serviﬂ
*4‘ ...... '
P | NFS server | :

NFS B A 1\ V
P [iscsi [iscsT) [ Fs ]
: Y v 17 y \
[ SKB ] | SKB | |storage IO
[ NIC__J<——>[ NIC | [flash dev]
iSCSI ---»

[ e p— >

App. .

server

Going over block protocols (iSCSI), application (KV), file system (NFS), or cloud-FS (HDFS) costs
performance (mix of network and storage overheads) — can we do something better?
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FlashNet: Basic Challenge

RDMA operations are defined for a memory location, how do we get a

memory location for a flash?

Virtual Memory Address

RDMA operation

7?77 ideas?

Flash device
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FlashNet: Basic Challenge

RDMA operations are defined for a memory location, how do we get a

memory location for a flash?

Virtual Memory Address

RDMA operation

How to find location of a file on flash ?
How to manage flash better?

Decrease the amount of steps needed to
lookup things

server
mmap :)

File System

Flash device
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FlashNet Stack

<«----RDMA control expanding to storage

] sort 7] «—Data path from flash devices to a client
Co-development of a software: —
RStore| | KV {e— server application
A FlashNet
1. Flash Controller : Contigfs | 10 stack

) operating IS | Trre - wll P

2. File system system RDMA- 24" | flash array

3. RDMA Controller controller|| .o ntroller

Sl 5EHE

RDMA controllers helps to on-demand fetch pages from the file system
File system is like DFS, hence, large contiguous files (easy offset calculation)

Flash controller manages devices and uses RDMA access statistics for flash device
management and page sharing between |I/O operations

Put together they help to translate quickly between a network request and flash
address



Abstraction Translation

RDMA identifies a memory location using a tag

| mmap virtual address range |

file

I

Flash logical address locations (FS does this
translation)

This file offset to a local on flash LBA is done by
{————7 the file system (ext4, F2FS)

So for any random file offset you need to ask
from the file system where is the data stored
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ContigFSs

Simple
Array
offsets

Builds on the same idea as DFS (lecture 4) on virtualized flash devices

All files are contiguously allocated (logically)

<

Occupied

Superblock Occupied
inode®
inodel .
inode2 Lar2g1e_E|;:||e
inode3 ( )
inodeK

Large
Directory
(27TB)

Small file

Small dir

273 bytes space (254 x 2° bytes, 512 byte blocks)
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Abstraction Translation

RDMA identifies a memory location using a tag

|', mmap virtual address range | | mmap virtual address range |

file i | | file

\\ﬁ\{ \\\ | |

Flash logical address locations (FS does this z '
translation) With FlashNet, simple translation

| Y

R[?g’m > STag —»MEMONY__ file - | BA— PBA—s 123N
- region N I9

RDMA controller ContigFS flash controller




Flash Page Management

Read modify
write, In flight

Flash pages in the host go through
this state machine when in use

process 1  process 2
buffer

page = .

rea d(.*.)@ table @' .:

o"
B

ContigFS copy __,—"'ff\map

Flash '/p gg| CRAM
controller 0] ... Tk|[Tn]| pool
RDMA 1O

controller |SKB| | SKB

A simple shared DRAM page pool
where all I/0O happens 50



A Complete Operation

server process address space @ mmap

areal area2 ContigFS
RNIC @ Oregmr
-save LBA offset T T T
-generate STag S/ H filel  file2
get_LBA LBAS

— @ looku
-@resolveSTag @‘—aand |£|>4 <P | |

-request pages qu't_LBA

virtualized FTL

[T

(M T

oD

@ RDMA @ response
readreq. transmitted

PBAs

DRAM DMA pool is
shared between

o RDMA

o Mmap

o Local read/write

get/put LBAs counters
help with identifying hot
and cold flash pages

An RDMA controller can
easily do an offset
calculation from a virtual
address to a flash LBA
address (hence, no need
to involved the file
system)
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1400

Application-Driven Remote Storage Access

= |

|

I I

I

I

T l T L]
40 Gbps limit |
1200 i
" 1000 1 55 cketsfile read I
S 800 - FlashNet read -
v 600 ¥
400 i
200 - i
0 ||
1 2 4 8 16 32 64 128192 256
Number of clients
network || storage|| I/Odrivers ||scheduling| | kernel | app-logic | misc.
Socket/file 19.3% 7.3% 6.7% 15.8% 40.1% 4.7% 6.1%
FlashNet 20.6% 0.8% 6.4% 8.4% 46.7% 11.7% 5.4%
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Application Performance

server server

server server

Doing a distributed sorting over 4
machines

In-memory all data is stored in memory,
all network traffic is using RDMA

FlashNet, all data is in Flash, and
accessed using the “same” RDMA
operations

| | | |

100 | in-memory 3 FlashNet 914
w
Q 80 B .
wn
[
= S " 9' 48.3 ]
_g 40 , — .
{
5 22.4
@ 20 r 1.3:312:5 18 ]

7.1
0
16G 32G 64G 128G

The performance gap is purely from flash I/0

performance
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What you should know from this lecture

1. What is Storage Disaggregation and why is it useful

2. What are the options to access data stored on a remote server
a. Storage Area Network: iSCSI (block)
b. Network Attached Storage: NFS (files)
c. Object/Key-Value stores : like S3, redis (application-driven protocols)

What is NVMe-oF and how does it relate to RDMA networking

Why was NVMe-oF invented

What is FlashNet and what does it tries to optimize

How does FlashNet (an application-level RDMA operation) related to
NVMe-oF (a block-level protocol)

o U AW
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From Luna to Solar: The Evolutions of the Compute-to-Storage
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1 INTRODUCTION

Elastic Block Storage (EBS) is a fundamental service that pro-
vides persistent data hosting in virtualized disks (VDs) to cloud
users [4, 5, 7, 8]. It has to be highly reliable (e.g., “nine 9s™ for
data integrity [4]) and fast (e.g., sub-millisecond for I/O latency),
given that the VDs directly interact with the cloud users’ opera!ing
systems in real-time. As the It 1t ion” or “stor-
il pLeony N :EAD age disaggregation™ architecture of EBS has been widely adopted
[Rec | e | | by mainstream cloud providers, the network that interconnects the
Memory -~ @Nh,‘ eck | 200 rol - compute and storage clusters turns into an essential bottleneck of
9 cket (in) EBS’ overall performance.
Nonetheless, it does not mean that the network solution with
the bes( performance is n]ways suitable to EBS because there are
di of on a storage network. For
example storage networks should also support a massive number
of connecllom. long network distances, various lypes of hardware
fi be patible with the p and

—o PO p— o — limit the cost for cloud providers. Therefore, designing a storage
. CCS CONCEPTS nelwqu is highly challenging.‘ . ) .
https://dl.acm.org/doi/abs/10.1145/3544216.3544238 — T oyt
. o . g ° : * Networks — Network protocol design: * Information systems deployment experiences, and lessons of two significant upgrades on
— Cloud based storage; the EBS network of Alibaba Cloud (“AliCloud” for short) in recent
five years: LUNA and SOLAR.

Permission to make digital or hard copies of all or part of this work for personal or o LUNA ks de;:g"ff 'otmflace the kemfil TC,P stack for coor:

Data Block
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Figure 12: The workflow of a WRITE request in SOLAR.
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Original Data BIocks@ @ Receive Buffer . Response
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Figure 2: The internal structure and workflow of storage agent (SA). lEI cMD
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urther reading] File System Virtualization

ext4d ext4d + NVMe-oF XFS Btrfs

I/O operations 5.2 13.7 3 46
Total Bytes (in KiB)  44.7 46.8 12 1253

Amplification 11.2x 11.7x 3x  16x

Table 1: Analysis of storage (block) or network (packets with
NVMOoF) operations for a single 4KiB file write.

Host Userspace Host Userspace
Application Application
¢ Kernel }  Kernel

@ VFS VFS

B NFS FUSE
(c)__Tce/p Virtio-FS
@ NIC dlriver I virtio-fs over PCle
DPU HW accelerated

virtio-fs queues

CPU Userspace
polling

° DPFS-HAL
e DPFS-FUSE
e DPFS Backends

TCP offloaded sockets

DPFS: DPU-Powered File System Virtualization

Peter-Jan Gootzen® Jonas Pfefferle
IBM Research IBM Research
Zurich, Switzerland Yorktown Heights, USA
peterjan.gootzen@ibm.com jpf@ibm.com

ABSTRACT

As we move towards hyper-converged cloud solutions, the effi-
ciency and overheads of distributed file systems at the cloud tenant
side (i.e., client) become of paramount importance. Often, the client-
side driver of a cloud file system is complex and CPU intensive,
deeply coupled with the backend implementation, and requires
optimizing multiple intrusive knobs. In this work, we propose to
decouple the file system client from its backend i by

Radu Stoica Animesh Trivedi
IBM Research VU Amsterdam
Zurich, Swi d dam, Netherland:

rst@zurich.ibm.com atrivedi@vu.nl
extd extd + NVMe-of XES Birfs
1/0 operations 52 137 3 46
Total Bytes (in KiB)  44.7 468 12 1253
Amplification 1.2x 107 3x  16x

Table 1: Analysis of storage (block) or network (packets with
NVMoF) operations for a single 4KiB file write.

virtualizing it with an off-the-shelf DPU using the Linux virtio-fs
software stack. The decoupling allows us to offload the file system
client execution to a DPU, which is managed and optimized by
the cloud provider, while freeing the host CPU cycles. DPFS, our
proposed framework, is 4.4x more host CPU efficient per /0, de-
livers comparable performance to a tenant with zero-configuration
and without modification of their host software stack, while al-
lowing workload and hardware specific backend optimizations.
The DPFS framework and its artifacts are publically available at
https:/github.com/IBM/DPES.

CCS CONCEPTS

« Networks — Network File System (NFS) protocol; « Software
and its engineering — File systems management + Informa-

cpPU have stalled [29, 44]. As a result,
delivering the full spzed of 1/O devices in a disaggregated storage
setting takes a considerable amount of CPU resources [17, 43]. For
example, Alibaba reports 12 CPU cores are required to deliver 200
Gbps of block-level traffic [26]. At the file system level, LineF$
reports that with Ceph a single fully-utilized CPU only delivers
~10 Gbps bandwidth on a 100 Gbps link [16]. The question of CPU
efficiency is also important for bare-metal machines, which have
become popular in clouds recently [6, 34, 48]. Second, client-side
CNFS logic can be complex and bloated, as it has to implement
logic for communication and mmdmaunn with metadata and data
servers, cli ide buffer and caches,
etc. As a result, it is not uncommon for distributed file system
clients to consume GBs of DRAM and a significant amount of
CPU cycles, thus limiting how many concurrent tenants (VMs,

tion systems — Cloud based storage; +
hardware.

KEYWORDS

DPU, SmartNIC, Offloading, File system, Virtualization, Cloud,
Storage, Framework, Datacenter, RDMA, NFS, Virtio-fs, FUSE

1 INTRODUCTION
File systems are a populax choice for cloud data storage with offer-
ings such as traditi file systems PES, Ceph,
GlusterFS), and cloud-native file systems (CNFS) services like Ama-
zon EFS [3], AliBaba Pangu [10] or Azure Files [27]. With the recent
push for hyper-converged infrastructure [13], there is a need for an

can be packed on a server [2, 21]. Lastly, the close
coupling of the file system API and its implementation makes it
difficult to deploy new extensions or optimizations. For example, a
bare-metal tenant using Ceph can not easily switch to HopsFS [30]
or InfiniF$ [25] without significant disruptions if it experiences
‘metadata scalability challenges. Furthermore, many of these CNF$
come with hundreds of performance knobs and features, which
requires explicit deployment and optimizations from the tenant
side to extract the best possible performance.

To address the aforementioned challenges, we propose to virtu-
alize the access to a file system by offloading the file system client to
DPU to offer a light-weight, high
file system service. Such a design has multiple advanmges First,

efficient, scalable and high loud-native file system
service.

Building a high-performance, scalable cloud-native file system
for applications is a challenging task. First, the raw performance of

d : 2 ; 3
g g devices y increasing, while the

*Also with VU Amsterdam.
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decouples the file system API from its backend imple-
‘mentation, which enables us to optimize the backends to support
‘multiple workload needs such as multiple APIs [22], scalable meta-
data lookups with KV stores, decoupling of data from metadata
‘management [19]. A limited form of such decoupling is currently
offered by cloud providers in the form of an NFS gateway to the
CNFS client [3, 12, 27]. We argue this approach gives away control
of the file system client from the cloud provider, and demonstrate
that the Linux kernel NFS client has high overheads (§3.4). Second,
by offloading (and leveraging the hardware acceleration of the DPU)
the file system implementation, we free host CPU resources for
the tenant. One can argue that offloading capabilities can also be
leveraged by the host either at the block, or application level. A
block-level offloading allows a fully offloadable /O stack [20, 28],
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