
1

Storage Systems (StoSys)
XM_0092

Lecture 7: Networked NVM Storage

Animesh Trivedi
https://stonet-research.github.io/

Autumn 2023, Period 1

https://stonet-research.github.io/

Syllabus outline
1. Welcome and introduction to NVM (today)
2. Host interfacing and software implications
3. Flash Translation Layer (FTL) and Garbage Collection (GC)
4. NVM Block Storage File systems
5. NVM Block Storage Key-Value Stores
6. Emerging Byte-addressable Storage
7. Networked NVM Storage
8. Trends: Programmability
9. Distributed Storage / Systems - I

10. Distributed Storage / Systems - II
11. Emerging topics

2

The layered approach in the lectures

New devices (Flash)

New host interfaces (NVMe protocol)

Software implication in the block layer

File systems

Applications (key-value store)

3

Distributed Systems

L1

L2

L3

L4

L5

L6
Byte-addressable,
persistent memories

L7
Networked NVM

L8

Specialization

L9-L10

Networking Storage
Question 1: why do we want to network storage?

Question 2: what do you think when I say networked storage? (ever heard of
NAS, SAN, FC, iSCSI?)

4

Remote serversRemote serversRemote servers

Server and Workloads
What do we have inside a single server: CPU cores, DRAM, and some storage

5

CPUCPUCPU

DRAMDRAMDRAM

NVM
Storage

NVM
Storage

NVM
Storage

NVM
Storage

4 1TB

256GB

Server and Workloads
What do we have inside a single server: CPU cores, DRAM, and some storage

6

Server and Workloads
What do we have inside a single server: CPU cores, DRAM, and some storage

7

App

After this app, we have 1 core, 1 DRAM, and 4
storage left

Server and Workloads
What do we have inside a single server: CPU cores, DRAM, and some storage

8

What happens if an application needs
● 3 cores only, or 5 cores?
● 1.1 TB of NVM or only 500 GB?
● 128GB of DRAM, or 512 GB of DRAM

Issues
● Low resource utilization
● High cost of running infrastructure

○ Total cost of ownership (TCO)

App

After this app, we have 1 core, 1 DRAM, and 4
storage left

App???

Idea: Disaggregation (Storage)

9

CPUCPUCPU

DRAMDRAMDRAM

NVM
Storage

4 100GB

256GB

NVM
Storage

NVM
Storage

NVM
Storage

NVM
Storage

NVM
Storage

NVM
Storage

NVM
Storage

NVM
Storage

A remote location full of storage
Some locally attached storage

Slice and give out storage capacity from a remote location (dedicated storage servers)

The idea is not new : this is how even HDD based storage systems are also deployed. Benefits:
(i) on-demand device capacity provisioning, no underutilization
(ii) centralized provisioning, and management, a single point of upgrade to all
(iii) low cost TCO, as systems resources are fully utilized (with a mix of workloads)

How to Access Remote Storage - SAN

10

Server

Block layer
File system
Application

iSCSI - a network protocol to
access remote storage using
SCSI command set

IP Storage Protocols: iSCSI,
https://www.snia.org/sites/default/education/tutorials/2011/spring/networking/HufferdJohn-IP_Storage_Protocols-iSCSI.pdf

Storage Area Network (SAN)

● One of the most popular way of deploying “remote” block storage
● Block storage size can be anything, configured on demand (persistent or ephemeral)
● Deployable on the common data center networking infrastructure: Ethernet, TCP, IP

There are other ways to do SAN as well like ATA over Ethernet (AoE), Fiber Channel (FC), etc.

Initiator Targets

https://www.snia.org/sites/default/education/tutorials/2011/spring/networking/HufferdJohn-IP_Storage_Protocols-iSCSI.pdf

How to Access Remote Storage - NAS

11

Server

File system
Application

E.g., NFS, CIFS, SMB - these are
file level protocols

open, close, read, write,
stat, flush, etc.

Server-side file
system

Network Attached Storage (NAS)

● Deployment abstraction is a file
○ can be a just a point-to-point file system (NFS), e.g., https://www.rfc-editor.org/rfc/rfc1813
○ a shared, parallel file system (like GPFS, GlusterFS, Ceph) running on distributed block

devices
● Capacity provisioning and scaling is done at the file system level

In the cloud, similar example would include Hadoop FS

https://www.rfc-editor.org/rfc/rfc1813

Accessing Remote Storage

12NAS and iSCSI Technology Overview,
https://www.snia.org/sites/default/education/tutorials/2007/fall/storage/WolfgangSinger_%20NAS_and_ISCSI_Technology.pdf

NAS on SAN

https://www.snia.org/sites/default/education/tutorials/2007/fall/storage/WolfgangSinger_%20NAS_and_ISCSI_Technology.pdf

How to Access Remote Storage - Object

13

Server Application
Object store APIs
● Get, put, delete

A key value store

If not being restricted to files or blocks for storage, objects are flexible (flat namespace,
simple locking), scalable (can be distributed over multiple servers), and can support
multiple consistency models

Examples:

A key value store

A key value store

Object Storage 101 Understanding the What, How and Why behind Object Storage Technologies,
https://www.snia.org/sites/default/files/Object_Storage_101.pdf

https://www.snia.org/sites/default/files/Object_Storage_101.pdf

What is the Basic Challenge Here?

14

Software Time Network Time Storage Media Time

Total operation latency. (Often) Mostly dominated by the storage media access time,
that was HDD performance

Adrian M. Caulfield and Steven Swanson. QuickSAN: a storage area network for fast, distributed, solid state disks. In ISCA 2013.

What is the Basic Challenge Here?

15

Software Time Network Time Storage Media Time

Total operation latency. (Often) Mostly dominated by the storage media access time,
that was HDD performance

As storage media access time improved, software and network
time became the new bottlenecks - what can we do about them?

Adrian M. Caulfield and Steven Swanson. QuickSAN: a storage area network for fast, distributed, solid state disks. In ISCA 2013.

Understanding iSCSI with Disaggregated Flash

16Under utilization of resources

Deployment Setup with Disaggregated Flash

17

iSCSI Processing (+Networking) in Linux

18

● Initiator and Target iSCSI terminology
● iSCSI become a high-level protocol on top

of conventional TCP/IP processing
For more details, see Advanced Network Programming,
(Bsc, 3rd year Programming Minor course)

IP processing

Network device, SoftIRQ processing

https://the-linux-channel.the-toffee-project.org/index.php?page=3-links-linux-kernel-network-stack-and-architecture

https://the-linux-channel.the-toffee-project.org/index.php?page=3-links-linux-kernel-network-stack-and-architecture

Understand Network Optimizations

19

Flash capacity

Server contain Dual socket Xeon
processors, 64GB RAM, and network
connection of 10 Gbps between
tenants (i.e., initiators, datastores) and
the iSCSI target

Local performance of flash is at 250K
IOPS (random 4kB IOPS)

At 10.5K IOPS iSCSI single client
performance - bottleneck: CPU
performance at the target

Understand Network Optimizations

20

Optimize network processing
scalability

By default iSCSI uses 1 request
processing thread per session

Use multiple threads per session to
leverage multicore systems (use 6 out
of the 8 cores available, why?)

Almost 4-5x gains

(not shown) With 8 tenants it can do
250K (device bounded)

Understand Network Optimizations

21

Optimize network offloading

Enable TSO and LRO offloading

TCP segmentation offloading (TSO)
Large receive offloading (LRO)

These network controller features help
to reduce per packet overheads by
coleasing multiple 1500 bytes packets
into a large segments (~64kB)

Understand Network Optimizations

22

Optimize network offloading

Enable jumbo frames and IRQ affinity

Jumbo frames: default Ethernet frames
are 1500 bytes, jumbo frames 9000
bytes
→ Help to reduce per packet
overheads

IRQ affinity is used to distributed
interrupts from NICs to all cores for
scalable processing

Application-Level Performance
Run RocksDB on disaggregated flash
devices

Remote flash does increase the 95th
percentile latency by 260μs

● Is this acceptable? Depends upon
the application. If your SLOs are
in mseconds then yes

○ FB’s use-cases are in mseconds

● If they are in 100 useconds - No

What happens when multiple tenants share flash devices over the network?
23

Unloaded latency

Multi-Tenancy Loaded Latency

24

Comparison points: local (when each tenant has its own local flash) vs. remote when shared between 2
(left) and 3 (right) tenants

Observations: QPS is degraded by ~20%, but tail suffers significantly as we increase multi-tenancy
Left figure 2x application flash sharing, right 3x applications- notice the tail latencies

25%

55%

When does Disaggregation Make Sense?
Let’s do a first-order approximation for the benefits of disaggregation

25

Maximum capacity required
--
Maximum capacity per machine

Sum of flash + compute capacity in a single server

What are the minimum number of servers
needed to support an application?

Only flash requirements
Multiplied with the cost of flash
+ disaggregation overheads (20%)

Completely separate scaling of
compute requirements

When does Disaggregation Make Sense

26

Perfectly balanced
system

Compute driven

applications

Storage driven applications

If all balanced
then pay the price
of disaggregation

When does disaggregation makes sense: when compute and storage demands scale at a
different rate (which in real world happens often)

What are the Challenges with Storage Disaggregation

1. Come up with a better protocol than iSCSI? (hint: we did already for locally
connected flash)

2. What can we do to improve multi-tenancy for disaggregated flash?
3. What kind of joint network and storage optimizations we can do to

decrease the software cost of accessing remote storage?
4. Come up with a better remote data access API than just simple block,

files, or objects?
5. Very active area of research!

And many other variants of these themes, let's start with a better protocol

27

Faster Storage Needs a Faster Network
We are seeing networking performance improve
from 100 Gbps to 200 Gbps and 400 Gbps

They can deliver < 1-10 usec latencies
to access remote DRAM buffers

New ways of doing network operations like RDMA
enabled networks like InfiniBand, iWARP, RoCE

● Allows network processing inside the network controller (not the CPU)

How do we leverage the performance of these networks with storage?

28

NVM Express over Fabrics (NVMe-oF)
NVM Express

● Command and completion queues
● PCIe directly mapped queues
● Light-weight protocol

NVMe over Fabrics is a networked extension
of this idea

What is the “Fabrics” here?
It is an umbrella term to cover high-performance
networks like RDMA networks

29

The Block Layer

NVMe Transport Layer

NVMe
Local

NVMe
Device

NVMe
Device

NVMe
Device

NVMe Fabric
Initiator

Going over high
Performance network

A Userspace networking technology, applications have

● Directly mapped RX/TX queues in the userspace
● Can execute send/recv commands
● Can execute remote memory read/write operations
● Poll or interrupt driven completion notifications
● All networking processing is offloaded to the hardware (Network controller)

The interesting thing for us here is that RDMA is also (i) a queue-based; (ii) post
commands; (iii) poll for completion - type network operation

Animesh Trivedi, Patrick Stuedi, Bernard Metzler, Roman Pletka, Blake G. Fitch, and Thomas R. Gross. 2013. Unified high-performance I/O: one
stack to rule them all. In Proceedings of the 14th USENIX conference on Hot Topics in Operating Systems (HotOS'13). USENIX Association, USA, 4.

Remote Direct Memory Access (RDMA)

30

RDMA Operations

31

a
c

b

1. Allocate
memory buffers

a
c

b

2. Allocate data
and control queues

3. Recv a message 4. Get completion
notification

DONE disconnect

5. close

kernel

NIC

user-space

recv buffer ‘c’

c

RDMA: Two-Sided Send Recv Operations

32

DRAM CPU

NIC

Client

DRAM

NIC

1. Client posts a receive buffer
(pink)

2. Server posts a receive buffer
(cyan)

3. Client sends a buffer to the server
(orange)

4. Server’s NIC receives the buffer
and deposit it into the cyan buffer

5. NIC notifies the server
6. Server prepares a response and

send back the purple buffer
7. Client NIC receives the purple

buffer and deposit it into the pink
buffer

8. NIC notifies the client

1

63

CPU

Server2

4

5

7

8

RDMA: One-sided Read Operation

33

CPU

NIC

Client

CPU

NIC

Server

DRAM DRAM

Hey! Your content is stored in the buffer at
‘raddr’ (+ a tag, called steering tag or Stag)

laddr raddr

RDMA: One-sided Read Operation

34

DRAM CPU

NIC

Client

DRAM

NIC

1. Client: READ remote memory
address (raddr) to local address
(laddr)

2. Client: posts READ request

3. Server: read local (raddr) - local
DMA operation

4. Server: TX data back to client NIC

5. Client: local DMA to (laddr) buffer
in DRAM

6. Client: interrupt the local CPU/OS
to notify completion about the
client’s READ operation

1

2

3
4

5

6laddr raddr
CPU

Server

RDMA operations are like remote “DMA” -
defined for specific remote memory locations

NVMe-oF = RDMA + NVM Express

35

RDMA
Network

Controller

RDMA
Network

Controller

Remote
NVMe Device

Client /dev/nvm0n1
(initiator)

Server
(target)

1. Post NVMe
command
capsule

High-performance Network, 100 Gbps Ethernet

2. NVMe command
Capsule processing

3. Local NVMe
execution

4. Transmit response
capsule back

5. Command
completed

At no point in time we have to use any legacy protocols like SCSI, or socket/TCP network transfers

NVMe-oF Write

36

Shared common buffer
for network and storage

Use one-sided RDMA
operations

Ethernet Storage Fabrics Using RDMA with Fast NVMe-oF Storage to Reduce Latency and Improve Efficiency,
https://www.snia.org/educational-library/ethernet-storage-fabrics-using-rdma-fast-nvme-storage-reduce-latency-and-improve

https://www.snia.org/educational-library/ethernet-storage-fabrics-using-rdma-fast-nvme-storage-reduce-latency-and-improve

NVMe-oF Read

37
Ethernet Storage Fabrics Using RDMA with Fast NVMe-oF Storage to Reduce Latency and Improve Efficiency,
https://www.snia.org/educational-library/ethernet-storage-fabrics-using-rdma-fast-nvme-storage-reduce-latency-and-improve

https://www.snia.org/educational-library/ethernet-storage-fabrics-using-rdma-fast-nvme-storage-reduce-latency-and-improve

NVMe-oF Performance

38

In comparison to iSCSI, NVMoF provides performance very close to a locally attached storage

Zvika Guz, Harry (Huan) Li, Anahita Shayesteh, and Vijay Balakrishnan. 2018. Performance Characterization of NVMe-over-Fabrics
Storage Disaggregation. ACM Trans. Storage 14, 4, Article 31 (December 2018), 18 pages.

NVMe-oF Latency Performance

39

Latency is dominated by the
NVMe directly attached storage
path on the target side

NVM over Fabrics
Is the dominant and standard
way to deploy networked flash

Supports various high-performance
Networks like RDMA

● New specification on TCP/socket
is now also available (not offloaded)

Is constantly being updated to
accommodate new changes

Thesis (available): Understanding and optimizing NVMoF/TCP (+scheduling QoS)

40

TC
P

https://www.dolphinics.com/solutions/nvme_over_pcie_fabrics.html and
https://nvmexpress.org/welcome-nvme-tcp-to-the-nvme-of-family-of-transports/

https://www.dolphinics.com/solutions/nvme_over_pcie_fabrics.html
https://nvmexpress.org/welcome-nvme-tcp-to-the-nvme-of-family-of-transports/

Thinking outside the Box
NVMe-oF is equivalent to iSCSI (hence, a SAN solution)

RDMA allows to read/write remote memories directly

Quite popular inside data center due to its performance to build

● Key-value stores and caches
● Transaction systems
● File systems
● Distributed data structures
● Consensus and ordering

Can we think of extending RDMA operations to directly access Flash location?
41

client server

flash

FlashNet: Building a Unified Network/Storage Stack (2018)

42

PhD Thesis, A. Trivedi, End-to-End Considerations in the Unification of
High-Performance I/O, https://doi.org/10.3929/ethz-a-010651949

https://doi.org/10.3929/ethz-a-010651949

Number of Steps to Access Remote Data

43

Going over block protocols (iSCSI), application (KV), file system (NFS), or cloud-FS (HDFS) costs
performance (mix of network and storage overheads) → can we do something better?

FlashNet: Basic Challenge

44

RDMA operations are defined for a memory location, how do we get a
memory location for a flash?

Flash device

Virtual Memory Address

RDMA operation

??? ideas?

FlashNet: Basic Challenge

45

RDMA operations are defined for a memory location, how do we get a
memory location for a flash?

Flash device

Virtual Memory Address

RDMA operation

File System

mmap :)

● How to find location of a file on flash ?
● How to manage flash better?
● Decrease the amount of steps needed to

lookup things

server

FlashNet Stack
Co-development of a software:

1. Flash Controller
2. File system
3. RDMA Controller

RDMA controllers helps to on-demand fetch pages from the file system

File system is like DFS, hence, large contiguous files (easy offset calculation)

Flash controller manages devices and uses RDMA access statistics for flash device
management and page sharing between I/O operations

Put together they help to translate quickly between a network request and flash
address 46

Abstraction Translation
RDMA identifies a memory location using a tag

47

mmap virtual address range

file

Flash logical address locations (FS does this
translation)

This file offset to a local on flash LBA is done by
the file system (ext4, F2FS)

So for any random file offset you need to ask
from the file system where is the data stored

ContigFS

48
273 bytes space (264 x 29 bytes, 512 byte blocks)

Large File
(2 TB)

Superblock

inode0
inode1
inode2
inode3

inodeK

Simple
Array
offsets

Occupied Small file

Small dirLarge
Directory

(2 TB)

Occupied

● Builds on the same idea as DFS (lecture 4) on virtualized flash devices
● All files are contiguously allocated (logically)

Abstraction Translation
RDMA identifies a memory location using a tag

49

mmap virtual address range

file

Flash logical address locations (FS does this
translation)

mmap virtual address range

file

With FlashNet, simple translation

Flash Page Management

50

Flash pages in the host go through
this state machine when in use

A simple shared DRAM page pool
where all I/O happens

A Complete Operation

51

● DRAM DMA pool is
shared between

○ RDMA
○ Mmap
○ Local read/write

● get/put LBAs counters
help with identifying hot
and cold flash pages

● An RDMA controller can
easily do an offset
calculation from a virtual
address to a flash LBA
address (hence, no need
to involved the file
system)

Application-Driven Remote Storage Access

52

Application Performance

53

server server

server server

Doing a distributed sorting over 4
machines

In-memory all data is stored in memory,
all network traffic is using RDMA

FlashNet, all data is in Flash, and
accessed using the “same” RDMA
operations

The performance gap is purely from flash I/O
performance

What you should know from this lecture
1. What is Storage Disaggregation and why is it useful
2. What are the options to access data stored on a remote server

a. Storage Area Network: iSCSI (block)
b. Network Attached Storage: NFS (files)
c. Object/Key-Value stores : like S3, redis (application-driven protocols)

3. What is NVMe-oF and how does it relate to RDMA networking
4. Why was NVMe-oF invented
5. What is FlashNet and what does it tries to optimize
6. How does FlashNet (an application-level RDMA operation) related to

NVMe-oF (a block-level protocol)

54

[Further reading]
SIGCOMM 2022 (Aug, 2022)

55

https://dl.acm.org/doi/abs/10.1145/3544216.3544238

https://dl.acm.org/doi/abs/10.1145/3544216.3544238

[Further reading] File System Virtualization

56

Further Reading
● Adrian M. Caulfield and Steven Swanson. 2013. QuickSAN: a storage area network for fast, distributed, solid

state disks, in the ACM ISCA '13.
● Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu John, and Sanjeev Kumar. 2016. Flash storage

disaggregation, in the EuroSys 2016.
● Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2017. ReFlex: Remote Flash ≈ Local Flash. In the ACM ASPLOS

2017.
● Zvika Guz, Harry (Huan) Li, Anahita Shayesteh, and Vijay Balakrishnan. 2018. Performance Characterization of

NVMe-over-Fabrics Storage Disaggregation. ACM Trans. Storage 14, 4, Article 31 (December 2018), 18 pages.
● Animesh Trivedi, Nikolas Ioannou, Bernard Metzler, Patrick Stuedi, Jonas Pfefferle, Kornilios Kourtis, Ioannis

Koltsidas, and Thomas R. Gross. 2018. FlashNet: Flash/Network Stack Co-Design. ACM Trans. Storage, 2018.
● Jaehyun Hwang, Qizhe Cai, Ao Tang, Rachit Agarwal, TCP ≈ RDMA: CPU-efficient Remote Storage Access with

i10. NSDI 2020, pages, 127-140.
● Animesh Trivedi, Patrick Stuedi, Bernard Metzler, Roman Pletka, Blake G. Fitch, and Thomas R. Gross. 2013.

Unified high-performance I/O: one stack to rule them all. In ACM HotOS 2013.
● Brendan Cully, Jake Wires, Dutch Meyer, Kevin Jamieson, Keir Fraser, Tim Deegan, Daniel Stodden, Geoffrey

Lefebvre, Daniel Ferstay, and Andrew Warfield. 2014. Strata: scalable high-performance storage on virtualized
non-volatile memory. In Proceedings of the 12th USENIX FAST, 2014.

57

