Storage Systems (StoSys)
XM_0092

Lecture 6: Byte-Addressable Persistent
Memories

Animesh Trivedi
https://stonet-research.github.io/

Autumn 2023, Period 1

VRIJE
UNIVERSITEIT
AR° AMSTERDAM

https://stonet-research.github.io/

Syllabus outline

5 Hesti i | cof TR
3 Flash.¥ lation] FTL L Gat] coHection(GE
4—NVM-Bleelk-Sterage Filesystems
5—NVM-BleekStoragekey-\Value-Steres

6. Emerging Byte-addressable Storage <:

7. Networked NVM Storage

8. Trends: Specialization and Programmability

9. Distributed Storage / Systems - |

0. Distributed Storage / Systems - Il

1. Emerging Topics

The (new) triangle of storage hierarchy

Cost: $/GB

- cache line granularity

cache line granularity

- non-volatile storage Persistent Memory <1usec
- load/store instructionS/ -----
NAND Flash/Optane SSDs ~10-100 usec

- Block granularity : : _
- non-volatile Hard disk drive (HDD) 10-100ms
- 1/0 commands Tape 100ms.10s

- - -
capacity

The Basic Storage Model

CPU | cache Memory | DRAM
Controller
Data is stored persistently on storage devices
e Block addressable (not byte) Large, slow, and persistent storage
e Use NVMe/SATA/SAS protocols to move device (NAND flash, HDD)

data first to DRAM
e CPU can_only_access data from DRAM
e To make data persistent write out again to the storage - responsibility of the application/OSes

The two-level of storage hierarchy: Memory (fast, byte-addressable, small, volatile) and
Storage (slower, block-addressed, large, and non-volatile)

NVM as Persistent Memory (pmem)

pmem

Memory

CPU Controller

cache

A

The holy grail of memory hierarchies DRAM

Ideally: performance close to DRAM, but persistent

We have been anticipating these memories from many years, and hence, continued to do
research in the “software” architectures before they arrived
— In this lecture we will cover the high-level concepts (it is a large area, see references)

Keep in mind that the abstraction of persistent memories is much border and can be done on conventional devices
also with mmap: https://web.eecs.umich.edu/~tpkelly/papers/Failure atomic msync EuroSys 2013.pdf and
https://www.usenix.org/system/files/login/articles/login winter19 08 kelly.pdf

https://web.eecs.umich.edu/~tpkelly/papers/Failure_atomic_msync_EuroSys_2013.pdf
https://www.usenix.org/system/files/login/articles/login_winter19_08_kelly.pdf

Today: Intel Optane

Released in 2019 (latest and greatest piece of storage technology teday)

It is a byte-addressable, load-store accessible (from the CPU) storage that can
be put in a DDR4 DIMM slot (uses the same mechanical and electrical
protocols)

In comparison to DRAM

e More capacity: 128, 256, and 512 GB DIMMs (DRAMs are usually at 32-64GB then
they get super expensive)

Cheaper : than the DRAM (2-4x) times, but more expensive than Flash (10-100x)
Energy Efficient : Unlike DRAM, no need to constantly refresh

Btw - be ready to refresh basic ideas in computer architecture now :)

Today: Intel Optane

ller

DDR-T protocol DDR4 protocol

|
l

SeuaS [OTU0Y PonPOWN
sjeudis jonuo)

seudis |0U0) papowun

DDR4 DRAM

(inteD OPTANE DC 0%

PERSISTENT MEMORY

Intel Optane DC Persistent Memory Module (PMM), https://www.storagereview.com/news/intel-optane-dc-persistent-memory-module-pmm

https://www.storagereview.com/news/intel-optane-dc-persistent-memory-module-pmm

Get the stories behind the |

TRENDING Best Tech Deals GPU Benchmark Hierarchy AMD Ryzen 7]

Tom's Hardware is supported by its audience. When you purchase through links on our site, we may earn aj

Home > News

Intel Kills Optane Memory Business, Pays
$559 Million Inventory Write-Off

By Paul Alcornjpublished July 28, 2022

3D XPoint at the last crossroad.

o o ‘ Q o e ® Comments (31)

(Image credit: Lenovo)

Update 08/02/2022 12:30am PT: Intel reached out to clarify that it would bring
the next-gen Crow Pass Optane memory DIMMs to market and will use its
existing inventory to fulfill orders. This wasn't clear from Intel's previous
statement because this is technically a future product. We have clarified that

[DcD]>Zero-Downtime Podcast /[

1eadlines | Listen now

)tane Memory, writes
inventory

hip giant

business, a line of memory that was slightly slower than
igh input/output operations per second.

59 million inventory impairment/write-off as it exits the

ina
ing
ctives.

lease
ane

- Intel

lory chip business to SK Hynix, but kept onto Optane - a
Inology it developed with Micron in 2015.

persistent memory DIMMs based on the technology,
market, but was a complete failure in the consumer
on in January 2021.

ed in 2021, and left the market.

point in the below text.

https.//www.tomshardware.com/news/intel-kills-optane-memory-business-for-good

https://www.tomshardware.com/news/intel-kills-optane-memory-business-for-good

Optane Memory Layout and Operation Modes

Memory Mode: Optane behaves Far Mem ,_N_eff Mem
as a large (slower) DRAM, thus not m 5

leveraging its persistent qualities = ©

e DRAM is used as a cachein
front of XP DIMM

|

|

:

i

|

e Good for applications with m !
needs for large DRAM !
|

|

EXIN

|

|

Direct-mapped Cache
(4KB Block) CPU

Memory Mode

LLC cache

o1
Mesh Interconnect

————— —

An empirical guide to the behavior and use of scalable persistent memory. USENIX FAST (2020), https://www.usenix.org/system/files/fast20-yang.pdf

https://www.usenix.org/system/files/fast20-yang.pdf

Optane Memory Layout and Operation Modes

Memory Mode: Optane behaves Far Mem Near Mem AppDirect Mode

as a large (slower) DRAM, thus not el
leveraging its persistent qualities

e DRAM is used as a cachein

front of XP DIMM

|

|

!

|

|

e Good for applications with m !
needs for large DRAM !
|

|

|

|

|

AppDirect Mode: Optane is used
as a persistent memory and m
exposed to the OS/application |
e Applications should be Direct-mapped Cache
aware of its performance (4KB Block) CPU
and persistence properties Memory Mode

Interleaved

LLC cache

oo
Mesh Interconnect

————— —

An empirical guide to the behavior and use of scalable persistent memory. USENIX FAST (2020), https://www.usenix.org/system/files/fast20-yang.pdf 10

https://www.usenix.org/system/files/fast20-yang.pdf

Optane Memory Layout and Operation Modes

Two modes: Memory Mode and App Direct Mode (these are Optane specific)

/ DRAM Cache Hit \ / DRAM Cache Miss \ / App Direct Read \\
e ore

CPU CACHES

CPU CACHES

Potential

- DRAM “ v Chal/engeS?
_ @gmexe | _ S ermrecs) _ @éwwvﬁ/

vvvvvvvvvvvvvvvv

11
https://www.storagereview.com/news/intel-optane-dc-persistent-memory-module-pmm

https://www.storagereview.com/news/intel-optane-dc-persistent-memory-module-pmm

How Does the Current CPU Work? (simplified)

Any size
4 Cache line size, 64B
—
CPU B cache IR DRAM
Controller

[I

[I
[I
[I

All CPU load and store accesses go to the cache
e Cache Hit: data is immediately transferred to the CPU
e Cache Miss: data is fetched from DRAM into the cache, and then transferred to the CPU

Caches are always managed in the cache line granularity (64B), and this is also the unit of DRAM access (so, is
DRAM truly a byte-addressable memory?)

A memory controller can re-order loads and stores (out of order execution), hence, there is no guarantees in
which order instructions get to DRAM (the program order is different than the execution order)

Question 1: How can a (i) CPU make sure that data is always flushed/pushed to DRAM,; (ii) ordering?
Question 2: Why are these concerns and questions important? 12

How Does the Current CPU Work? (simplified)

Any size
Y Cache line size, 64B
M
— - emory
&Pt cadie — Controller | — pmem
— —
— —
— —

Now instead of DRAM, there is persistent memory

1. What if CPU writes are only stored in the cache (write-back mode)?

Do you program cache? Isn’t the CPU cache suppose to be a micro-architecture, hence,
it is an invisible CPU feature to the programmer?
3. What if CPU writes to pmem are re-ordered?

Question 1: How can a (i) CPU make sure that data is always flushed/pushed to PMEM,; (ii) ordering?

Question 2: Why are these concerns and questions important? 13

AN -

How Does the Current CPU Work? (simplified)

Any size
Y Cache line size, 64B
M
— - emory
&Pt cadie — Controller | — pmem
— —
— —
— —

Special instructions available on modern CPUs

1. Non-temporal instructions, e.g., movnta,movntadqa (bypasses the CPU cache)
2. Explicitly flush cache lines (c1flush, clflushopt, clwb)

Further use sfence to ensure all writes are globally visible and flushed

The Significance of the x86 SFENCE Instruction, https://hadibrais.wordpress.com/2019/02/26/the-significance-of-the-x86-sfence-instruction/
Memory part 5: What programmers can do https:/lwn.net/Articles/255364/
https://en.wikipedia.org/wiki/X86 instruction listings

https://stackoverflow.com/guestions/40096894/do-current-x86-architectures-support-non-temporal-loads-from-normal-memory

https://hadibrais.wordpress.com/2019/02/26/the-significance-of-the-x86-sfence-instruction/
https://lwn.net/Articles/255364/
https://en.wikipedia.org/wiki/X86_instruction_listings
https://stackoverflow.com/questions/40096894/do-current-x86-architectures-support-non-temporal-loads-from-normal-memory

CPU Instructions to Control Data Flushing

CLFLUSH This instruction, supported in many generations of CPU, flushes a single cache line. Historically, this instruction
is serialized, causing multiple CLFLUSH instructions to execute one after the other, without any concurrency.
This instruction, newly introduced for persistent memory support, is like CLFLUSH but without the
CLFLUSHOPT serialization. To flush a range, software executes a CLFLUSHOPT instruction for each 64-byte cache line
(followed by an in the range, followed by a single SFENCE instruction to ensure the flushes are complete before continuing.
SFENCE) CLFLUSHOPT is optimized (hence the name) to allow some concurrency when executing multiple
CLFLUSHOPT instructions back-to-back.
CLWB Another newly introduced instruction, CLW B stands for cache line write back. The effect is the same as
(followed by an CLFLUSHOPT except that the cache line may remain valid in the cache (but no longer dirty, since it was
SFENCE) flushed). This makes it more likely to get a cache hit on this line as the data is accessed again later.
NT stores Another feature that has been around for a while in x86 CPUs is the non-temporal store. These stores are “write
(followed by an combining” and bypass the CPU cache, so using them does not require a flush. The final SFENCE instruction is
SFENCE) still required to ensure the stores have reached the persistence domain.
This kernel-mode-only instruction flushes and invalidates every cache line on the CPU that executes it. After
executing this on all CPUs, all stores to persistent memory are certainly in the persistence domain, but all cache
WBINVD lines are empty, impacting performance. In addition, the overhead of sending a message to each CPU to execute
this instruction can be significant. Because of this, WBINVD is only expected to be used by the kernel for
flushing very large ranges, many megabytes at least.

Once flushed, data will move to the memory controller ...

Andy Rudoff, Persistent Memory Programming, https://www.usenix.org/system/files/login/articles/login summer17 07 rudoff.pdf

15

https://www.usenix.org/system/files/login/articles/login_summer17_07_rudoff.pdf

Optane Internals - the Write Path

CPU
load/store
64-bytes

iMC

L

Write Pending

Queue (WPQ)

Address
Optane Controller Buffer Indirection Table
(AIT) - cache
256 bytes
Optane Media AIT

Writes end up in iMC, at WPQ
Then flushed into Optane DIMM

Optane DIMM has a write buffer,
where 64 bytes r/w are merged
into 256 bytes accesses to Optane

There is indirection table mapping
and its cache

The Optane controller runs the
logic. Many of the Optane details
are secret

How do we make sure that data is not lost in the case of a power cut? 16

Optane Internals - the Write Path

-| iMC
CCPO ™ """ T TN T a weserrren
Write Pending
load/st
604cibystgsre 1 Queue (WPQ) A new Intel platform feature
] called Asynchronous DRAM

Refresh (ADR) domain (area
covered inside the dotted
red line)

1 1

1 1

1 |

1 1

1 1

1 1

1 |

1 1

1 1

: Buff Address :

I Optane Controller utrer Indirection Table ' p

ower storage (battery,

i (AIT) - cache ! ge (battery
1 |

1 1

1 1

1 1

1 |

1 1

1 1

1 1

1 |

supercapacitor) on the
platform to ensure writeback
in case of a failure (typically
within 100 usec)

256 bytes

Optane Media AIT

——

ADR and eADR - Bringing Persistency to the whole CPU

CLWB + fence :

5 -or- Custom .

: CLFLUSHOPT + fence Power fail protected domain :

Q -or- indicated by ACPI property: :

: 3 CLFLUSH CPU Cache Hierarchy :

] z -or- : eADR

= NT stores + fence

: -or- :

é WBINVD (kernel only)
T S Optiona/ly eADR available
. g ':?r'_‘ Minimum Required E with the 3rd generation Of
: 2 WPQ Flush (kernel only) Power fail protected domain: : Xeon processors

o Memory subsystem -

: ADR (CopperLake, 2020)

Build Persistent Memory Applications with Reliability Availability and Serviceability, https:/software.intel.com/content/www/us/en/develop/articles/build-pmem-apps-with-ras.html
Third Generation Intel® Xeon® Processor Scalable Family Technical Overview, 18
https:/software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-overview.html

https://software.intel.com/content/www/us/en/develop/articles/build-pmem-apps-with-ras.html
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-overview.html

An Empirical Guide to the Behavior and Use of Scalable Persistent
Memory (Feb, 2020)

An Empirical Guide to the Behavior and Use of Scalable Persistent Memory

Jian Yang ', Juno Kim', Morteza Hoseinzadeh', Joseph Izraelevitz*, and Steven Swanson’

{jianyang, juno, mhoseinzadeh, swanson) @eng.ucsd.edu’ joseph.izraelevitz @colorado.edu®
fUC San Diego ¥University of Colorado, Boulder

Abstract

After nearly adecade of anticipation, scalable nonvolatile
memory DIMMs are finally commercially available with the
release of Intel’s Optane DIMM. This new nonvolatile DIMM
supports byte-granularity accesses with access times on the or-
der of DRAM, while also providing data storage that survives
power outages.

Researchers have not idly waited for real nonvolatile
DIMMs (NVDIMMs) to arrive. Over the past decade. they
have written a slew of papers proposing new programming
models. file systems, libraries, and applications built to exploit
the performance and flexibility that NVDIMMs promised to
deliver. Those papers drew conclusions and made design de-
cisions without detailed knowledge of how real NVDIMMs
would behave or how industry would integrate them into com-
puter architectures. Now that Optane NVDIMMs are actually
here, we can provide detailed performance numbers,

have made about how NVDIMMs would behave and per-
form are incorrect. The widely expressed expectation was
that NVDIMMs would have behavior that was broadly sim-
ilar to DRAM-based DIMMs but with lower performance
(ie., hxgherlmency.md lower bandwidth). These assumptions

are reflected in the methodology that arch studies used to
emulate NVDIMMs, which uu,lude specialized hardware plat-
forms [21], software emulation mechanisms [12.32,36,43 47|,

exploiting NUMA effects [19.20,29]. and simply pretending
DRAM is persistent [8.9, 38].

We have found the actual behavior of Optane DIMMs to
be more complicated and nuanced than the “slower. persis-
tent DRAM" label would suggest. Optane DIMM perfor-
mance is much more strongly dependent on access size. ac-
cess type (read vs. write), pattern, and degree of concurrency
th:m DRAM perfonnance Furthermore, Optane DIMM’s per-

bined with the archi ral support that Intel’s

guidance for programmers on these systems, reevaluate prior
art for performance. and reoptimize persistent memory soft-
ware for the real Optane DIMM.

In this paper. we explore the performance properties and
characteristics of Intel's new Optane DIMM at the micro and
macro level. First, we investigate the basic characteristics of
the device. taking special note of the particular ways in which
its performance is peculiar relative to traditional DRAM or
other past methods used to emulate NVM. From these obser-
vations, we recommend a set of best practices to maximize the
performance of the device. With our improved understanding,
we then explore and reoptimize the performance of prior art

latest p provide, leads to a wider range of design
choices for software designers.

This paper presents a detailed evaluation of the behavior
and performance of Optane DIMMs on microbenchmarks and
applications and provides ci ionable guidelines for
how pmgmmmexs should tune their programs to make the
best use of these new memories. We describe these guidelines.
explore their _ and d rate their utility by
using them to guide the optimization of several NVMM-aware
software packages. noting that prior methods of emulation
have been unreliable.

The paper proeeeds as follows. Section 2 provides archi-
1 dotoil, + lai A tbo Dot INIAAAS

19

System Setup

2 X CPU 24 cores Cascade Lake

Each CPU: 2 x iMC with 3 memory
channels each

Total 6 channels for DRAM and
Optane

2 CPU x 6 Ch.x 32 GB =192 GB DRAM

2 CPU x 6 Ch. x 256GB = 3TB Optane

Optane DIMM i@ Optane DIMM #3

CPU
II!H!IIIIII!IHIII

Optane DIMM #1 Optane DIMM i4

LLC cache

Optane DIMM #2 Optane DIMM #5

PhyAddr Offset: 0

Stripe Size —24KB

LU 2 #3 #1 #5 #0 #4 #2 #3
DIVITUCEE 0 0 (0 0 0 0 4K 4K

Interleaving Size
(c) Interleaved Optane DIMMs

There are 2 of such CPUs

20

Basic Performance: Latency

300 i 30> EE DRAM
= B Optane
e 200 -

3
3 8690
P 100 - 5762
L
. 1]
Read Read Write Write
Sequential Random (ntstore) (clwb)

e Theread latency for Optane is 2-3x higher than DRAM
e The random-vs-sequential gap is 20% for DRAM but 80% for Optane memory
e Write performance measures writes reaching the ADR domain (not necessarily Optane) 21

Optane Bandwidth Comparison - Scalability

DRAM Optane-NI Optane
- 8 40
£ 100 -
) 6 - 30 A
e
§ 50 - 4 20 -
]
i 21 A 10 A
@
0 0 T T T T 0 T T T T
0 5 10 15 20 25 D 5 10 15 20 25 0 5 10 15 20 25

\ # Threads ‘\#Th reads # Threads

e Peak DRAM bandwidth can be significantly higher than the Optane bandwidth
o NI =non-interleaved (single Optane DIMM)

e Both scale nicely with the number of threads. Optane write performance dips as
the content on the device increases. Interleaving helps with improved
performance.

22

Optane Bandwidth Comparison - Access Size

Bandwidth (GB/s)

DRAM (24/24/24)

100— PR S

P
| ——

Read
—»— Write(ntstore)

50

—— Write(clwb)

0 I 1 1 1 1

64B 512B 4KB 32KB 256KB 2MB

Access Size (bytes)

Optane-NI (4/1/2)

Optane (16/4/12)

/f

40

30 1
20 1

10 T

g

T T T T T T
4B 512B 4KB 32KB 256KB 2MB

_"\Access Size (bytes)

0

—\

T T T T T T
64B 512B 4KB 32KB 256KB 2MB

Access Size (bytes)

DRAM performance is independent of the access size

Larger gap between read/write performance in Optane than in DRAM
Interleaving improves peak read and write bandwidth by ~5x (see y-axis)
Optane bandwidth for random accesses under 256 B is poor

Recommendation - use 256 bytes aligned data structures and accesses

23

Detecting Optane Buffer Size

c ® ®- ° *

S 2.0 4

©

k.

=

3 1.5

£

<

£ 1.0 A — =

; I I I I I
64B 512B 4KB 32KB 256KB 2MB

Region size

Write addresses repeatedly which are separated by certain XP Line size (256B)
Measure WA (DIMM counter), which shows at 16 lines, 64 x 256 = 16 KB buffer

Recommendation: Try to put related data items together in a buffer of 16kB

Further reading: Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, and Hong Jiang. 2022. Characterizing the performance of intel optane persistent
memory: a close look at its on-DIMM buffering. In Proceedings of the Seventeenth European Conference on Computer Systems (EuroSys '22). Association for 24
Computing Machinery, New York, NY, USA, 488-505. https://doi.org/10.1145/3492321.3519556

https://doi.org/10.1145/3492321.3519556

Which Write/Flush Mechanism to Use?

& 15 2

e S —a— ntstore

m Y 1 4 —— store+clwb

O o

9 S

< § 0.5

©0 >

~ O

£ 5

o -

2 ks

2

5 0 -4 T T T 0.1 -4 T T T
64B 256B 1K 4K 64B 256B 1K 4K

Access Size (bytes) Access Size (bytes)

e Non-temporal instruction has better bandwidth (lower latency) for large accesses (because it
does not bring cache line)
e For small accesses (<256B), clwb is fast

Recommendation: Based on what you are writing back, pick one - dynamic selection

Further reading: Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, and Hong Jiang. 2022. Characterizing the performance of intel optane persistent
memory: a close look at its on-DIMM buffering. In Proceedings of the Seventeenth European Conference on Computer Systems (EuroSys '22). Association for 25
Computing Machinery, New York, NY, USA, 488-505. https://doi.org/10.1145/3492321.3519556

https://doi.org/10.1145/3492321.3519556

[Not covering]

What should be the interface between
the CPU and persistent memory?

Data copy cost?
DMA engines - how to use them?

e Optimize - pre-pinning, batching,
and parallelism

Frees the CPU from “synchronous”
data copies!

usenix
THE ADVANCED
' COMPUTING SYSTEMS

ASSOCIATION

Revitalizing the Forgotten On-Chip DMA to Expedite
Data Movement in NVM-based Storage Systems

Jingbo Su, Jiahao Li, and Luofan Chen, University of Science and Technology of
China; Cheng Li, University of Science and Technology of China and Anhui Province
Key Laboratory of High Performance Computing; Kai Zhang and Liang Yang,
SmartX; Sam H. Noh, UNIST & Virginia Tech; Yinlong Xu, University of Science and
Technology of China and Anhui Province Key Laboratory of
High Performance Computing

https://www.usenix.org/conference/fast23/presentation/su

This paper is included in the Proceedings of the
21st USENIX Conference on File and
Storage Technologies.

February 21-23, 2023 « Santa Clara, CA, USA
978-1-939133-32-8

Open access to the Proceedings
of the 21st USENIX Conference on
File and Storage Technologies

is sponsored by

M NetApp’

26

Persistent Memory Programming (2017)

Good Old-Fashioned Persistent Memory

Persistent Memory Programming

ANDY RUDOFF

Andy Rudot is a Senior
Principal Engineer at Intel

ocusing on non-
) ry pmzrsmn‘ ne
vl n He is a contributor to the SNIA
NVM Programming Technical Work Group.
His more than 30 years’ industry experience

ncludes design and development work in
operating systems, file systems, networking,
and fault management at coi

anies large

and small. including Sun Micros
VMware. Andy has taught various operating

stems and

systems classes over the years and is a
ithor of the popular UNIX Network
mming textbook t

co-a
Pro

n the June 2013 issue of ;login:, I wrote about future interfaces for non-

volatile memory (NVM) [1]. In it, I described an NVM programming

model specification [2] under development in the SNIA NVM Program-
ming Technical Work Group (TWG). In the four years that have passed, the
spec has been published, and, as predicted, one of the programming models
contained in the spec has become the focus of considerable follow-up work.
That programming model, described in the spec as NVM.PM.FILE, states
that persistent memory (PM) should be exposed by operating systems as
memory-mapped files. In this article, I'll describe how the intended persistent
memory programming model turned out in actual OS implementations, what
work has been done to build on it, and what challenges are still ahead of us.

The Essential Background on Persistent Memory

The terms persistent memory and storage class memory are synonymous, describing media
with byte-addressable, load/store memory access, but with the persistence properties of
storage. In this article, I will focus on persistent memory connected to the system memory
bus, like a DRAM DIMM, creating a class of non-volatile DIMMs known as NVDIMMs.

To further clarify what [mean by persistent memory. I am only speaking about NVDIMMs
that allow software to access the media as memory (some NVDIMMs only support block
access and are not covered here). This provides all the benefits of memory semantics. like
CPU cache coherency. direct memory access (DMA) by other devices, and cache line granu-
larity access which programmers can treat as byte-addressability. To provide these seman-
tics, the media must be fast enough that it is reasonable to stall a CPU while an instruction
is accessing it. NAND Flash, for example, is too slow to be considered persistent memory

by itself, since access is typically done in block granularity and it takes long enough that
context switching to allow another thread to do work makes more sense than stalling. Where
hard drive Bopessen ary ty] plcally measured in milliseconds, and NAND Flash SSD accesses
are memory accesses are measured in nanoseconds.
Depending on the exact type of media, an NVDIMM may not be as fastas DRAM, but it isin
the neighborhood.

TERENCE KELLY

Terence Kelly studied computer science at
Princeton and the University of Michigan,
earning his PhD at the latter in 2002 He then
spent 14 years at Hewlett-Packard Labora-
tories. During his final five years at HPL, he
developed software support for non-volatile
memory. Kelly now teaches and evangelizes
the persistent memory style of programming.

His publications are isted at hi

umich.edu/-tpkelly/. tpkelly@

shipping in volume. Today’s NVM offers performance between that of

By(e»addressuhle non-volatile memory (NVM)—Intel Optane—is now

DRAM memory and flash storage [2, 7] and can be accessed via either
storage or memory interfaces [8). The latter offers the prospect of radically
simplifying application software by allowing direct manipulation of persis-
tent data via CPU instructions (LOAD and STORE), thus offering an alterna-
tive to traditional persistence technologies such as relational databases and
key-value stores. Industrial adoption of NVM and its corresponding style of

programming is growing [9].

he it i NVM hardware, now
(“p-mem’ \d block-addressed durabl
ds Tl .
NVM invites, il i i i but NVM hardware.
This “r[ig]g illustrate -mem hardware with C code for
UNDXAL : e o y £
tolay out application data in memory. i easy tricks and pat-
O doesn’ integrity in the face of failures,
h consi i ‘The right crash ‘mechanism for p-mem
ing on ional hardware is fail msync() (FAMS) [6], and this
icle i i ion of FAMS.
A Persistent Linked List
TheC preper td list. Ttrelies on
ab: i library, presented later. Notice that the list node data
field s not ional pointer but apmo_t

(“persistent memory oﬂsel type”), defined as a uintptr_tin pmem.h. Under the hood, pmem

address where

data which may

runs of

be relocatable, which

improves portability
b

scope of this article; see [5] for a discussion.

#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include “paem.h"
typedef struct {
pmo_t next;
char string():
) node_t:

#define NP(0) ((node_t *)pmen_02p(0))

See also

27

So, How Do You Program/Manage Your PMEM DIMMS?

Management Ul [Application J L Application] L Application
I Standard 4“ Standard T Standard Load/Store
Raw Device File API File API
Access
Management Library

v v

File System PM-Aware
i File System

v

NVDIMM Driver

|

b 4

VI |

N

NVDIMMs

o
Mappings |
H

User
Space

I am going to use the term
NVDIMM to refer to a
general pmem technology
not specifically to Optane

28

Understand: Storage and Memory

Storage and Memory are what is known as classical two-level storage system

e Memory (DRAM) is fast, byte-addressable and keeps data (technically
cached) that is being worked on
e Storage (block storage) is slower, block-addressable and keeps data

persistently
o Optane and DRAM is also block-addressable, 64B blocks

Why do we want to run a file system on top of a persistent memory?
e Because itis known familiar interface which maintains the two-level distinction of

storage and memory
e Data must be brought into DRAM from storage before being accessed

29

Looking at the Storage Stack Again

User space applications (databases, key-value store, browsers, file and email servers)

Jread, write, open, stat, chmod (syscalls)

The virtual file system (VFS) I N

The page buffer
. \ cache
Network-fs Pseudo FS Special FS Block-FS

(NFS, samba) (proc, sys) (tmpfs) (ext4, f2fs, brtfs) {

Kernel Linux Block Layer

Device drivers
(NVMe)

30

Looking at the Storage Stack Again

User space applications (databases, key-value store, browsers, file and email servers)

Jread, write, open, stat, chmod (syscalls)

The virtual file system (VFS) I N

The page buffer
. cache
Network-fs Pseudo FS Special FS Block-FS
(NFS, samba) (proc, sys) (tmpfs) (ext4, f2fs, brtfs) {

Kernel

NVDIMMs (e.g., Optane)

31

What Happens When | mmap a Page?

mmap takes pages from the page cache

applications

If no page exist then the FS brings the
page in the cache

The virtual file
system (VES)

Block-FS
(ext4, f2fs, brtfs),

Kernel

Once in the cache then those DRAM
address is used in the mmap and the
pages are shared between the kernel and
application

Does this make sense on NVDIMM? to do so

NVDIMMs on mmap_?

.g., Opt
(e.g., Optane) .

Direct Access (DAX) Extensions for files

applications

The virtual file
system (VES)

Block-FS
(ext4, f2fs, brtfs)

Kernel

NVDIMMs
(e.g., Optane)

New file system support to directly mapped pages from
NVDIMMs instead of making copies into the page cache
for mmap operation

e read/write calls have their own optimizations with memcpy
(need more support from FSes)

Needs modification into the file system to support this
operation

= Translating file offset to their PMEM locations
The DIMM block size must be equal to the CPU page size

Multiple filesystems support DAX: ext2, ext4 and xfs

https://www.kernel.org/doc/Documentation/filesystems/dax.txt

33

https://www.kernel.org/doc/Documentation/filesystems/dax.txt

Direct Access (DAX) Extensions for files

'tly mapped
o » Before DAX * DAX-enabled Frillakinpgp
ﬂ system to

the page

Memory Contraller

data
[
(exts Memory Controller

Ss

Kernel

Page Cache:
(e.g., uptdarie)

esystems/dax.txt

34

https://www.kernel.org/doc/Documentation/filesystems/dax.txt

Updated Stack Image

Management Ul

!

Management Library
A

[Application J [Application J [Application -]

Standard Standard Standard Load/Store
Raw Device File API File API User
Access Space
File System | DAX SN Aware |
I File System
Kernel
> NVDIMM Driver Fpace
MMU mappings

NVDIMMs

35

Updated Stack Image
Management Ul [Application J [Application } [Application -]

! sl == el R
Access Space
Management Library
A
File System | DAX T ™~ What are
File System pmem-aware fs?
v i 4 oo
> NVDIMM Driver PPAce
MMU mappings
NVDIMMs

36

There are a lot of Interesting File Systems Designs in this area

High-level Design File System User/Kernel DAX POSIX- Main Contribution
Space compliant

Influenced by Traditional

File Systems (e.g. exr2)

BPFS [18] Kernel X v POSIX-compliant file system that reduces write amplifi-
cation through adapted shadow paging

PMFS [25] Kemel v v Bypass OS page cache and generic block layer, avoid
extensive I/O stack modifications. Lightweight in-place
metadata updates

HiNFS [57] Kemel v ' Elimination of double copy overhead in kernel

Ext4- Kemel v v Include DAX to PM in the existing ext4 file system

DAX [29]

Contiguous File Alloca-
tion

SCMES [77] Kemel X X Bypass the generic block layer and perform file mapping
via the MMU

SplitFS [37] Hybrid v X Introduces a hybrid architecture in which data operations
are handled in user space, while metadata operations are
processed in the kernel

Aerie [71] Hybrid X X Allow user space applications to update metadata directly
in user space

Kuco [15] User v v Address the poor scalability of existing PM hybrid file
systems (e.g., SplitFS)

ZoFS [23] User v v Like Aerie, allow user space applications to update meta-
data directly in user space, however, with less kernel in-
volvement

Log-Structured

NOVA [79] Kemel X v Per inode logs to allow massive parallelism, while provid-
ing strong consistency guarantees

Strata [39] Hybrid v v Capture unique properties of multiple storage devices in

one file system

Table 4: PM File Systems categorized by their high-level design

Persistent Memory File Systems: A Survey, Wiebe van Breukelen (2020),
https://drive.google.com/file/d/1EF-tTEDWYYoFOzywlC-STLgHYIGmMyGDx/view?usp=share

Persistent Memory File Systems:
A Survey

Wiebe van Breukelen
Vrije Universiteit Amsterdam

Abstract

Persistent Memory (PM) is non-volatile byte-addressable
memory that offers read and write latenci the order of
magnitude smaller than flash storage, such as SSDs. This sur-
vey discusses how file systems address the most prominent
challenges in the implementation of file systems for Persistent
Memory. First, we discuss how the properties of Persistent
Memory change file system design. Second, we discuss work
that aims to optimize small file I/O and the associated meta-
data resolution. Third, we address how existing Persistent
Memory file systems achieve (meta) data persistence and
consistency.

Keywords. Persistent Memory, Storage Class Memory
(SCM), Byte-addressable Memory, Memory-Aware File Sys-
tems, Intel Optane, Direct Access (DAX)

1 Introduction

Over the past several decades, data storage has become an
indispensable part of modern society. However, modern stor-
age had its origins in the early twentieth century. Charles
Babbage, who is considered by some to be the "father of the
computer”, introduced a simplistic form of storage in his An-
alytical Engine: a general-purpose computer that could be
programmed by punch cards [19]. With the emergence of
faster and more advanced computers in the 1960s, storage
demand grew exponentially. As a result, magnetic storage,
where data is stored on rotating platters, like on a hard disk
drive (HDD), quickly gained traction. Until now, this growth
has not slowed down.

As storage demands and processing power increased. a new
bottleneck d. In demanding envi such as data
centers, data access time could not keep up with CPU speed.
This speed gap between CPU and storage continues to grow,
so faster storage devices are necessary [28, 27].

A Solid-State Drive (SSD), a form of flash storage, offers
lower read and write latencies than an HDD, especially in
a workload that involves a lot of random data accesses [41].

Like HDDs, SSDs exchange data by the smallest unit of ac-
cess: a block [81]. Exchanging these blocks between the
computer (or host) and storage efficiently is an ongoing chal-
lenge. Compared to CPUs, storage devices are an order of
magnitude slower in terms of latency [33].

Operating systems strive to minimize the impact of high
device latency on application speed. For example, the Linux
kemnel reduces the performance impact as much as possible by
maintaining a page cache: a chunk of memory where the OS
caches chunks of a fle for later use. Based on access patterns,
disk blocks can be loaded into memory proactively, allowing
substantially lower access latencies [14].

Such mitigations are due to the view we had on storage over
the past 50 years. We assumed a two-level storage hierarchy:
a fast primary memory (e.g.. DRAM) and slow secondary
memory (e.g.. HDD). Both memories have their own unique
properties. for example, the access interface, location within
the computer architecture, and access latencies. This has a
large influence on the overall design of the Operating Sys-
tem. An alternative scheme, the one-level storage hierarchy.
changes how we view storage as a whole. Instead of a hier-
archy in which we combine the strengths of multiple storage
devices, we switch to a hierarchy in which we combine stor-
age and memory into a single device. Persistent Memory
(PM) enables the use of such hierarchy [2). It s a form of stor-
age that i very related to DRAM in terms of access latency,
the most significant difference being that PM is non-volatile
while DRAM is volatile. A well-known example of Persistent
Memory is Intel's Optane Memory [36].

To better illustrate the position of PM in the storage hierar-
chy, consider Figure 1. PM is located between an SSD and a
DRAM module in terms of access latencies and is accessed
through CPU load and store instructions at cache line gran-
ularity; 64 bytes for the x26-64 architecture [74]. Note that
the capacity and cost scale with the access latencies: storage
located at the top (e.g., CPU caches) of the pyramid is scarce
and costly compared to storage at the bottom of the pyramid,
e.g. HDDs. In terms of data bandwidth, DRAM outperforms
PM by quite a margin, see Table 1.

link

37

https://drive.google.com/file/d/1EF-tTEDwYYoFOzywlC-STLqHYlGmyGDx/view?usp=share_link

ctFS: Replacing File Indexing with Hardware
Memory Translation through Contiguous File
Allocation for Persistent Memory

] usenix
’ AAAAAAAAA
ssssssssssssssss

sssssssssss

ctFS: Replacing File Indexing with Hardware

“How to /everage mem Ory trans/atlon Memory Translation through Contiguous File
.) A!Io;gtion for Persistgnt Memory
hardware for file system design” g v ersy of vt

https://www.usenix.org/conference/fast22/presentation/li

Why: Unification and performance acceleration

This paper is included in the Proceedings of the
20th USENIX Conference on File and Storage Technologies.
February 22-24, 2022 « Santa Clara, CA, USA
978-1-939133-26-7

Where: File offset — location

Open access to the Proceedings
of the 20th USENIX Conference on
File and Storage Technologies

is sponsored by USENIX.

How: Use page tables as the core data structure g =

We are also building something similar

38

The Extent of the Problem ...

N /0O m Indexing (kernel) Trap = Indexing (user) B mmap WM Relink @8 Other

—_—

Q e & g &£ &

Dot S P8

©

-+t

C 80

@

860

()]

o

— 40

Q

e 20

e

CO <+ U — <+ ~ W0 <+ =~ 0 <+ =~ 0n

- | o LL UQLL & T W &~ < w R A T

I x w.t‘ X £ 2 x £ = x £ B x % B
a ’6. g g v g v o v a
(V)] w0 [Vp] ()] (V)]

Append SWE SW RW SR RR
Figure 1: Performance breakdown (in percentage) of ext4-DAX and SplitFS on persistent memory. The number above
each bar is the total run time in seconds.

39

Recap x86-64 page table

Virtual Address

63 48 47 3938 30 29 2120 12 11 0
Page-Ma
. Levae? 4 OﬁFs)et Page-Directory- | Page-Directory Page-Table Physical-
Sign Extend Pointer Offset Offset Offset Page Offset
(PML4)
X9 A9 49 9 A12
Page-
Page-Map Directory- Page- 4 Kbyte
Level-4 Pointer Directory Page Physical
Table Table Table Table Page
PTE >
52
s+ ™ PDPE
Ll oML4E . Physical
[52 =] Address
PDE ,

*This is an architectural limit. A given processor
51 12 implementation may support fewer bits.
Page-Map LCevel-4 '
| Base Address | CR3

Figure 5-17. 4-Kbyte Page Translation—Long Mode

Complete file system (think: DFS)

Translation

MMU Accelerated

40

Architecture of ctFS - Persistent Page Tables (PPT)

Virtual address space ctU
B Partition 1 Partition 2 B
user space]
kRernel Populate/
> invalidate A
.:: Page fault Physical PM Space ctk
DRAM page table

1. DRAM page table vs. PMEM page table (TLBs): how many levels, where to store
2. PPT design : management of pointer copies
3. User-space split architecture : kernel manages PPTs, and user-space lays out the FS

Atomic pswap

Before pswap(A, B) After pswap(A, B)
PUD PMD PTE page PUD PMD PTE page
e |A

>

>
>

>

<!
-

-

-
!
-

= |B
-—

>
> -
>
> [
>
A: 111111110 111111110 111111110 0©000000000000000
B: 000000000 111111110 111111110 ©0000000000000000
Y Y

——

PUD PMD PTE Offset

10__
107 e pswap

m— memcpy()

Runtime (ns)

3 Hll 1 \'IH\I [N ‘\‘l | 1 \‘\HII I rH-l] 1 HII\I I 1 I
PMD: PUD:

10° 10! 10? 512103 10% 10°512*512 10°
pages pages

Number of 4KB pages

Figure 6: Comparing the performance of pswap and
memcpy. Both the X and Y axis are log scale.

42

Results...

Appends as 4KB on 10GB File

L___/[e]

7 10
I Page Fault
6 8 B pswap
B Other
6.
: € 4
g 0Tag 43 &% L8 4% U2 28 L% 43 L8 SF B8
© © © © © @© © © © © © ©
S 3.55 28 23 28 28 28 23 23 28 28 23 23 23
18 s sync strict sync strict sync strict sync strict sync strict sync strict
Append SWE Sw RW SR RR

ctFS NOVA SplitFS
Sync/POSIX Mode Strict Mode

wu
Runtime (seconds)

Normalized Runtime
wrt ctFS
iy

https://github.com/robinlee09201/ctFS 43

https://github.com/robinlee09201/ctFS

Is File System the Best Way to Use PMEM?

We do not use file system with DRAM, do we?

With a file system

1. Application Data must first be (de)serialized when reading in
2. When writing out application data must be serialized to be written out to a file

Overheads from

1. Complex buffer management (read, write)
2. Serialization, deserialization process
3. File system, block layer, I/0 operations etc.

So, coming back to the point -- how do we use DRAM actually?

44

Updated Stack Image

How do we use
Management Ul [Application J [Application } [Application -] DRAM7

ndart A ndar naar:

I Rz:va Dc:avi‘:e SFt;e ‘:\P:’ sFt: e ‘;\Pld Load/Store Uear

Access Space
Management Library
A
DAX 3
File System | DAX O . What are pmem
File System fS - NO VA

! { .
> NVDIMM Driver Space

MMU mappings

NVDIMMs

45

How do We Acquire/Use DRAM?

1. Mmap — page granularity
2. malloc/ calloc — small memory, allocated on the process heap

We then build data structures in the allocated heap space (link list, trees, hash
table)

Can we do calloc or malloc on NVDIMM memory area?

How do we build a data structure in NVDIMM memory area?

What are the concerns here?

What does that would mean after a system restart?

46

NV-Heaps: Making Persistent Objects Fast and Safe with
Next-Generation, Non-Volatile Memories (2011)

NV-Heaps: Making Persistent Objects Fast and Safe
with Next-Generation, Non-Volatile Memories

Joel Coburn Adrian M. Caulfield

Ameen Akel Laura M. Grupp

Rajesh K. Gupta Ranjit Jhala Steven Swanson
Department of Computer Science and Engineering
University of California, San Diego
{jdcoburn, acaulfie, aakel, Igrupp, rgupta, jhala, swanson }@cs.ucsd.edu

Abstract

b

Persistent, user-defined objects present an attractive for
working with non-volatile program state. However, the slow speed
of persistent storage (i.¢., disk) has restricted their design and lim-
ited their performance. Fast, byte-addressable, non-volatile tech-
suchas phase change memary, will remove this constraint
and allow p: 10 build high-p data
structures in non-volatile storage that is almost as fast as DRAM.
Creating these data structures requires a system that is lightweight
enough to expose the performance of the underlying memaries but
also ensures safety in the presence of application and system fail-
ures by avoiding familiar bugs such as dangling pointers, multiple
free()s, and locking emors. In addition, the system must prevent
new types of hard-to-find pointer safety bugs that only arise with
persistent objects. These bugs are especially dangerous since any
comruption they cause will be permanent.

We have implemented a lightweight, high-performance persis-
tent object system called NV-heaps that provides transactional se-
mantics while preventing these emors and providing a model for
persistence that is easy to use and reason about. We implement
search trees, hash tables, sparse graphs, and amays using N V-heaps,
BerkeleyDB, and Stasis. Our results show that NV-heap perfor-
mance scales with thread count and that data structures imple-
mented using NV-heaps out-perform BerkeleyDB and Stasis im-
plementations by 32x and 244x, respectively, by avoiding the op-
erating system and minimizing other software overheads. We also
quantify the cost of enforcing the safety guarantees that NV-heaps
provide and measure the costs of NV-heap primitive operations.

Cal(gnnu and Subject Dntnplnn D 4 2 IOperaﬂn,e Snlenu]
S

gu.rhngc collec-
ons

The notion of memory-mapped persistent data structures has long
been compelling: Instead of reading bytes serially from a file and
building data structures in memory, the data structures would ap-
pear, ready to use in the program’s address space, allowing quick
access to even the largest, most complex persistent data structures.
Fast, persistent structures would let programmers leverage decades
of work in data structure design to implement fast, purpose-built
persistent structures. They would also reduce our reliance on the

! I, un-yped file-based 10 operations that do not integrate
well with most programming languages.

Many systems (e.g., object-oriented databases) have provided
persistent data structures and integrated them tightly into pro-
gramming languages. These systems faced a common challenge
that arase from the performance and interface differences between
volatile main memory (i.e., DRAM) and persistent mass stor-

i.c., disk): They required complex buffer management and
n) mechanisms to move data to and from DRAM.
ades of work optimizing this process, slow disks ul-
v limit performance, especially if strong consistency and
durability guarantees are necessary.

ew non-volatile memory technologies, such as phase change
and spin-torque transfer memories, are poised to remove the disk-
imposed limit on persistent object performance. These technolo-
gies are hundreds of times faster than the NAND flash that makes
up existing solid state disks (SSDs). While NAND, like disk, is
fundamentally block-oriented, these new technologies offer both
a DRAM-like byte-addressable interface and DRAM-like perfor-
mance. This potent combination will allow them to reside on the
processar's memary bus and will nearly eliminate the gap in per-

formance hclwccn \ul.mlc and nun-\ul.mlc storage.
Naith, 4 Bl 2 i

47

NV-Heaps: Motivation

A more interesting way to use NVDIMM is to make a persistent heap from where various
data types can be allocated, tree, link list, hash table, etc.

Insert(Object * a, List<Object> * 1);

48

NV-Heaps: Motivation

A more interesting way to use NVDIMM is to make a persistent heap from where various
data types can be allocated, tree, link list, hash table, etc.

Insert(Object * a, List<Object> * 1);

Is “I” pointer suppose to be non-volatile or volatile?

Is “a” pointer suppose to be non-volatile or volatile?

Let’s say if “a” came from DRAM, and we inserted it into “*I” which came from NV memory, then
after a restart, “*I” will contain a bogus pointer

The key problem is how to give proper system support to help mitigate these bugs and build

safe, high performance, concurrent and durable data structures in pmem 49

NV-Heaps: Core Ideas

A more interesting way to use NVDIMM is to make a persistent heap from where various

data types can be allocated, tree, link list, hash table, etc. Q Non-Volatile heap

So, what do we need to consider? Q Volatile heap

1. Pointer management:
a. Non-Volatile (NV) pointers within a single NV heap
b. NV pointers to another NV heap pointer

c. Volatile (V) pointers to a NV pointer
d. NV heap pointer to a volatile pointer
2. Memory management: memory leaks, double free () (d)

3. How and when to make structure consistent, and concurrent
a. Locking, transaction issues < hard to get it right even with DRAM

Which one of the 4 pointers type should be allowed, or not allowed? 50

NV-Heaps: Core Ideas

Simple primitives:
e persistent objects

e specialized pointer types
e amemory allocator
e atomic sections

A heap “root” object (a NV pointer) can be created or
opened by passing a file name to HVHeap

Files are self sufficient and contains offset based
references from the “root” to maintain integrity

User-
space

OS

HW

Application

NV-heaps

allocation, garbage

. collection, and transactions :

Non-volatile memory
allocation and mapping

Non-volatile memory

51

Example

class NVList : public NVObject {

DECLARE_MEMBER(int, value);
DECLARE_PTR_MEMBER(NVList::NVP
)2

void remove (int k)
{
NVHeap * nv =
NVList::VPtr a =

AtomicBegin {
while (a->get— t()
if (a->get next (
a->set next (a->get neX

= NULL)

}
a = a->get_next();

}
} AtomicEnd;

NVHOpen ("foo.nvheap") ;

nv->GetRoot<NVList: :NVPtr> () ;

t value () == k) {

DECLARE POINTER TYPES (NVList);
public:

\\A base class
tr, next);

\
\

{

=>get next()):;

\\\\\\\\\

A special pointer type

——_ Openaheap

| Get the “root” of this heap

~— Atomically iterate and remove
the item

52

NVHeap - Managing Memory

How to implement safe memory management?

Uses operational logging and reference counting together

Operational logs is kept in NVM and tracks operations (free, alloc, moving, transactions,
read, write) — helps to find bad operations

Reference counting (for all volatile and non-volatile references) on each object with
automatic garbage collection of objects by scanning if their count has hit 1 (1 because
they are internally always referenced by the root node in the NVHeap)

Locks to protect reference counting with concurrent threads, where should lock be stored?

o In DRAM: each NV object needs a lock, not scalable

o In NVDIMM: then you need to scan the whole NVDIMM to find all taken, but failed locks e

NVHeap - Managing Memory

How to implement safe memory management?

Uses operational logging and reference counting together

e Operational logs is kept in NVM and tracks operations (free, alloc, moving, transactions,
read, write) — helps to find bad operations

e Reference counting (for all volatile and non-volatile references) on each object with
automatic garbage collection of objects by scanning if their count has hit 1 (1 because

they are internally always referenced by the root node in the NVHeap)

e Locks to protect reference counting with concurrent threads, where should lock be stored?

Use generational locks: everytime a NVHeap file is open, increment its generation and
discard all old dirty locks

54

NVHeap - How to do pointer management

How to do pointer management?

Smart pointers and overloading

e Not supported (simplify): inter NV heap pointers or NV pointers to volatile structures
e Operator overloading : a pointer internally contain offset (use smart pointers and swizzling on
loading) and a heap id to identify which heap they belong to
o Thus, creation of an inter NVheap pointer can be rejected

class NVList : public NVObject {
DECLARE POINTER TYPES (NVList);
public:
DECLARE MEMBER (int, value);
DECLARE PTR MEMBER (NVList::NVPtr, next);
}i

NVHeap - How to do pointer management

How to do pointer management?

Smart pointers and overloading

e Not supported (simplify): inter NV heap pointers or NV pointers to volatile structures
e Operator overloading : a pointer internally contain offset (use smart pointers and swizzling on
loading) and a heap id to identify which heap they belong to
o Thus, creation of an inter NVheap pointer can be rejected
e Two types of NV pointers : normal and weak
o Normal: increment the reference count
o Weak: do not increment the reference count (useful for cyclic structures, doubly link lists),
can lead to a NULL but not corruption of NVHeap

N
NN —

56

NV Performance

PaYOBOWS|\

IngoN deay-AN

NVHQ desy-AN

INL1S desy-AN

NOd deay-AN
1se4 9d4
ﬁl 9Jes ddd
[I | I |
o o o o o o
o o o o o
o o (o o o
o o o o o
o [ee) © < Al
oas/suoleladp

[J 8threads

X1=D eAy
XL Ay
8JeS any
29 a5Eg 9AY
© © ©
O] X1=O YOSS
£ £ £ XL VOSS
<+ N - 9ES VOSS
9SEd VOSS
meE m

X1-0 sbegxis
XL sbagxis

afeg sbadxis
aseg sbaQxiS

T

X1-0 9@3llgy

X1 9alldgy
8jeg 93l1gy
aseq eaildy

X1-0 d|ge] yseH
X1 a|qelyseH
aes 9|de | ysey
aseg 9|qe] yseH

TR

ALY aseg SdSH
X1-O9dllg
XLoallg
ajeg 9al1g
aseg eailg

aseg 'sA dnpeaadg

Variants: base, safe (pointers+mm), Tx (with logging), C-TX (concurrency)

Comparison with other alternatives: BerkeleyDB, and memcached

57

Today, These Ideas...

pmem.io

Persistent Memory Programming

Home Glossary Documents PMDK ndctl

Blog About

The Programming Persistent Memory book is
now available! This is a great resource, whether
you're just learning about persistent memory or
you want to deep dive into the programming
details. You can read the book on-line for free!

This site is dedicated to persistent memory programming. If you're
just getting started, head to the Documentation Area for links to
background information, a Getting Started Guide, and lots of
additional information.

Here are some of the top links to related information:

e Persistent Memory Development Kit

e Persistent Memory Summit

 Intel Developer Zone for persistent memory

* PIRL Conference (Persistent Programming In Real Life)

What Is Persistent Memory?

The term persistent memory is used to describe technologies which
allow programs to access data as memory, directly byte-
addressable, while the contents are non-volatile, preserved across
power cycles. It has aspects that are like memory, and aspects that

Recent Blog Posts

API overview of pmemkv-

java binding
Posted October 30, 2020

Pmemkv is a key-value
data store written in C and
C++, however, it also
opens up a way to
leverage...

MemKeyDB - Redis with

Persistent Memory
Posted September 25, 2020

Context Redis is an in-
memory database that
supports various data-
structures and stores them
in main memory. To
support data durability,...

58

Persistent Memory Development Kit (PMDK)

A set of libraries and framework to

manage NVDIMMs as
1. Persistent memory;
2. Volatile, but large memory

Contains helper routines to allocate object,
persistent them, transactions, log, bulk
copying, and remote pmem access

Binding for multiple languages

https://pmem.io/

README.md

PMDK: Persistent Memory Development Kit

coverity [passing

The Persistent Memory Development Kit (PMDK) is a collection of libraries and tools for System Administrators and
Application Developers to simplify managing and accessing persistent memory devices. For more Information, see
https://pmem.lo.

To Install PMDK libraries, either Install pre-built packages, which we build for every stable release, or clone the tree

and bulld It yourself. Pre-built packages can be found in popular Linux distribution package repositories, or you can
check out our recent stable releases on our github release page. Specific installation instructions are outlined below.

Bugs and feature requests for this repo are tracked in our GitHub Issues Database.

Contents

1. Libraries and Utllities

2. Getting Started

3. Version Conventions

4. Pre-Bullt Packages for Windows

5. Dependencies
© Linux

© Windows
© FreeBSD
6. Building PMDK on Linux or FreeBSD
© Make Options
© Testing Libraries
© Memory Management Tools

59

https://pmem.io/

Adoption Spectrum
DIFFERENT WAYS TO USE PERSISTENT MEMORY

https://www.slideshare.net/IntelSoftware/pmdk-essentials-parts-1-and-2-andy-rudoff-and-pawel-skowron

Adoption Spectrum
DIFFERENT WAYS TO USE PERSISTENT MEMORY

libpmemobj

|
i
E!.‘:':

libmemkind f

https://www.slideshare.net/IntelSoftware/pmdk-essentials-parts-1-and-2-andy-rudoff-and-pawel-skowron

Adoption Spectrum

libvmemcache

Volatile object

cache

https://www.usenix.org/system/files/conference/hotstorage17/hotstorage17-¢

Persistent Memcached: Bringing Legacy Code to
Byte-Addressable Persistent Memory

Virendra J. Marathe

Margo Seltzer

Steve Byan Tim Harris

{virendra.marathe, margo.seltzer,steve.byan, timothy.l. harris } @oracle.com

Abstract

We report our experience
pmemcached a version of memcached ported to byle—

pected to not only imp: overall perfc of ap-
plications’ persistence tier, but also vastly reduce the
“warm up” time needed for applications after a restart.

Oracle Labs
During this exemnse we wanted to investigate several
building:and ‘eval i i Does persisting memcached’s state
cnla.ilany igni per overheads? In the early
memory. P memory is ~ Years of persi memory adoption, p will
be forced to maintain existing hi to
inue support for platf without persi memory.
Minimal variation between this legacy code and the new
memory optimized code is desirable. How diffi-

We decided to test this hypothesis on memcached. a pop-
ular key-value store. We took the extreme view of per-
sisting memcached’s entire state, resulting in a virtually
instantaneous warm up phase. Since memcached is al-
ready opumxzed for DRAM we expected our port to be

ward ing effort. Hy the effort
lumed out to be surprisingly complex during which we

cult will it be to persist memcached without changing its
high level architecture? What hurdles will we encounter
in this effort? Is there a pattern to these problems? Are
there common programming practices that could be used
to address them? How generic are these problems? Are
there issues lhat cannot be addressed without rearchitect-
ing d?

encountered several non-trivial p that chall d
the boundaries of memcached’s architecture. We detail
these experiences and corresponding lessons learned.

1 Introduction

Key-value stores with simple get/put based interfaces
have become an integral part of modern data centers.
The list of successful key-value stores is long — Cassan-
dra [22], Dynamo [11], LevelDB [23], memcached [14,
24], Redis [29] — to name a few. At the same time, emerg-
ing persistent memory technologies [1, 13, 18, 19, 26, 31],
such as Intel and Micron’s 3D XPoint [1], promise to pro-
vide the byte-addressability of DRAM (simple load/store

We first ize the existing and

of memcached (§ 2) We frame the description of our ex-
perience develop d”, our persi mem-

ory port of memcached in terms of 10 lessons leaned
(§ 3). Our findings were interesting, and in some cases,
quite surprising. A big takeaway was that this exercise
can be surprisingly non-trivial. The required lower level
changes were contagious and quickly became pervasive.
Failure-atomicity — providing all or nothing semantics
across a failure boundary — seems fundamental. We found
that we needed failure-atomic transactions more widely
than we expected [4, 6, 8, 15, 21, 28, 34]. Other high

access) and the persi: of traditional storage technol;
gies, at performance 1000X greater than state-of-the-art
NAND flash. This can fundamentally change the way
applications manage persistent data.

With persistent memory on the horizon, many re-
searchers are developing systems that ensure fast or even
ms(antaneous - recovery of apphcauon data [3, 5 T 27):

level surprises and lessons learned include the challenges
posed by tricky interactions between persm‘em and non-
); objects, co-location of ly p

and persi data, and i critical section

inflation.
We evaluated pmemcached on Intel’s Software Emu-
lation Platform for persistent memory [12, 36] using the

The ition is that by I ging bY‘B- YCSB workload generator [9] (see § 4). We did achieve
addressability and the high per of p almost i warm up. We expected some perfor-
memory, applications can drastically reduce, or even elim- mance degradation, however it varied significantly across
inate, the time needed to recover and “warm up” their different workloads. Degradation relative to h

state after a restart. While we share this view, we decided
to test it in the context of memcached, a key-value store
primarily used as a DRAM-resident cache. Warming up
memcached’s state after a restart can take up to several
hours for workloads with large data sets [16]. Persisting
that state could drastically reduce the warm up time.

was about 10-15% for YCSB's read heavy workloads,
but about 40-60% for YCSB's write heavy workloads.

2 memcached Overview

The high level architecture of memcached is typical of
many key-value stores: It contains a stateful client re-

62

https://www.usenix.org/system/files/conference/hotstorage17/hotstorage17-paper-marathe-060717.pdf

Example: libpmemobj €) ik s e Wi

) bdemsky and pbalcer examples: add a NULL check in biree

Transactional object store, providing memory allocation, transactions,

and general facilities for persistent memory programming: g aray exa
e direct byte-level access to objects is needed W hashmap com
e using custom storage-layer algorithms B libart com
e persistence is required B linkedlist con
typedef struct foo { ol o
PMEMoid bar; // persistent pointer W map com
int value; B pmemblk com
} foo; B pmemiog
) pmemobjfs exa

int main() {
PMEMobjpool *pop = pmemobj open (...); B (e o
TX_BEGIN(pop) { W e
TOID(foo) root = POBJ_ROOT(fo0); B slab_allocator com
D_RW(root)->value = 5; B string_store con
} TX_END; W string_store_tx com
} J string_store_tx_type con
https://pmem.io/pmdk/libpmemob/ (examples and documentation) B tree_map exa

63

https://pmem.io/pmdk/libpmemobj/

PMDK Stack Overview

[] Persistent ~ | Volatile [] Both
@ vcmap engine cmap engine :‘r";t:éz f
- Node.js
libpmemky libpmemobj+-+ Bindings
I NAPI *
userspace libpmemobj T Ruby Python
libpmem - PMDK bindings bindings bindings
C++ API (header only) 4
¢ INI \f FFI \(NAPI
libvmmalloc memkind libpmempool) CAPI
i e . ' v m 1 .-
@ file system (e.g. ext4-DAX) pmemkv core (C++)
kernel devdax -DAX
fsdax libpmemobj++
-/
@ NVDIMM Hardware libpmemobj

° Evaluating Performance Characteristics of the PMDK Persistent Memory Software Stack, BSc thesis, Nick-Andian Tehrany
e https://pmem.io/2020/03/04/pmemkv-bindings.html
e hittps:/pmem.io/pmdk/ « all libraries and their documentation 64

https://drive.google.com/file/d/1I-sVeCblGZlDiBSoJXG1a_oJTEDCM_yk/view
https://pmem.io/2020/03/04/pmemkv-bindings.html
https://pmem.io/pmdk/

Want to Try NVDIMMSs?

Use QEMU

gemu-system-x86_64 \
-drive file=ubuntu.img,format=raw,index=0,media=disk \
-m 4G,slots=4,maxmem=32G \
-smp 4 \
-machine pc,accel=kvm,nvdimm=on \
-enable-kvm \
-net nic \
-net user,hostfwd=tcp::2222-:22 \
-object memory-backend-file,id=meml,share,mem-path=./dimm@,size=4G \
-device nvdimm,memdev=meml,id=nv1,label-size=2M \
-object memory-backend-file,id=mem2,share,mem-path=./dimml,size=4G \
-device nvdimm,memdev=mem2,id=nv2,label-size=2M \
$ dmesg | grep user:
[mem 0x0000000000000000-0x000000000009fbff] usable
[mem 0x000000000009fcO0-0x000000000009Fffff] reserved
[mem 0x00000000000f0000-0x00000000000FFffff] reserved
[mem Ox0000000000100000-0x00000000bffd5fff] usable

.000000] [mem ©x00000000bffd6000-0x00000000bfffffff] reserved
.000000] [mem 0x00000000feffc000-0x00000000feffffff] reserved
000000] [mem—0x0000000011£c8000-0x00800000 £ £ 111 1F] d
.000000]

.000000]

.000000]
.000000]
.000000]
.000000]

0
0
0
0
0
0
0
0
0

pmem.io
Persistent Memory Programming

Home Glossary Documents PMDK ndctl Blog About

How to emulate Persistent Memory

Data allocated with PMDK is put to the virtual memory address space, and concrete ranges are relying on
result of mmap(2) operation performed on the user defined files. Such files can exist on any storage
media, however data consistency assurance embedded within PMDK requires frequent synchronisation of
data that is being modified. Depending on platform capabilities, and underlying device where the files are,
a different set of commands is used to facilitate synchronisation. It might be msync(2) for the regular
hard drives, or combination of cache flushing instructions followed by memory fence instruction for the
real persistent memory.

[mem 0x0000000100000000-0x000000013Ffffffff] persistent (type 12)
[mem 0x0000000140000000-0x00000001ffffffff] persistent (type 12)

https://docs.pomem.io/persistent-memory/getting-started-guide/creating-development-environments/virtualization/gemu

65

https://docs.pmem.io/persistent-memory/getting-started-guide/creating-development-environments/virtualization/qemu

Now Image a System

CPU

A CPU
e With a typical 12 DIMM slots

e Dual socket =24
e 24x512GB=12.3TB of persistent storage
No DRAM, only persistent memory

66

Imagine a System with Just Optane DRAM

1. What do storage and memory mean then? Two-level of storage?
a. Virtual memory, paging, address translation?
b. File systems, buffer caches, files, permissions?
c. Single address space operating systems

2. What does execution mean?

a. What does application installation (on fs) and execution (in DRAM) mean?
b. What do updates mean? A new checkpointed application state?

3. Operating system design
a. Booting? What is that
b. How does OS (no temporary state) interacts with devices (have DRAM, can restart)
c. Data corruption, fault isolation in architecture specific code (less portability)

Operating System Implications of Fast, Cheap, Non-Volatile Memory, https://www.usenix.org/legacy/events/hotos11/tech/final files/Bailey.pdf

67

https://www.usenix.org/legacy/events/hotos11/tech/final_files/Bailey.pdf

Most Importantly - This will not work anymore!

R ~ 4
A
-

HELPDESK

HAVE U TRIED TURNING IT OFF
AND ON AGAIN?

https://www.pinterest.com/pin/61572719880076742/

68

https://www.pinterest.com/pin/61572719880076742/

More New Technologies are Coming

First carbon nanotube NRAM products due in 2020,
says Nantero

April 14,2020 //By Peter Clarke 1 Comment

NRAM Cross-Section

| NRAM CELL |

NRAM™ cell with CMOS select transistor and CNT resistive
change memory element shown in SEM cross-section.

https://www.eenewsanalog.com/news/first-carbon-nanotube-nram-products-due-2020-says-nantero

https://www.eenewsanalog.com/news/first-carbon-nanotube-nram-products-due-2020-says-nantero

Twizzler: a Data-Centric OS for Non-Volatile Memory

Peter Alvaro
UC Santa Cruz

Daniel Bittman
UC Santa Cruz

Abstract

Byte-addressable, non-volatile memory (NVM) presents
an opportunity to rethink the entire system stack. We present
Twizzler, an operating system redesign for this near-future.
Twizzler removes the kernel from the 1/O path, provides pro-
‘grams with memory-style access to persistent data using small
(64 bit), object-relati ibject pointers, and enables sim-
pleand eficient long-term sharing of data both betweer appli-
cations and between runs of an application. Twizzler provides
aclean-slate programming model for persistent data, realizing
the vision of Uxix in a world of persistent RAM.

We show that Twizzler is simpler, more extensible, and more
secure than existing /O models and implementations by build-
ing software for Twizzler and evaluating it on NVM DIMMs.
Most persistent pointer operations in Twizzler impose less
than 0.5 ns added latency. Twizzler operations are up to 13x
faster than Un1x, and SQLite queries are up to 4.2 faster than
on PMDK. YCSB workloads ran 1.1-2.9 faster on Twizzler
than on native and NVM-optimized SQLite backends.

1 Introduction

Byte-addressable non-volatile memory (NVM) on the mem-
ory bus with DRAM-like latency 23, 38] will fundamentally
shift the way that we program computers. The two-tier mem-
ory hierarchy split between high-latency persistent storage and
low latency volatile memory may evolve into a single level of
large, low latency, and directly-addressable persisient memnry
Mere

Pankaj Mehra
IEEE Member

Ethan L. Miller
UC Santa Cruz
Pure Storage

Darrell D. E. Long
UC Santa Cruz

use of load and store instructions to directly access persistent
data, simplifying applications by enabling persistent data ma-
nipulation without the need to transform it between in-memory
andon-storage data formats. Thus, the model that best exploits
the low latency nature of NVM is one in which persistent data
is maintained as in-memory data structures and not serialized
or explicitly loaded or unloaded. To avoid serialization. this
model must support persistent pointers that are valid in any
execution context, not just the one in which they were created.
“Trying to mold NVM into existing models will not enable its
fullest potential, just as SSDs did not reach their full potential
until they transcended the disk paradigm. To explore a “clean-
slate” approach, we are building Twizzler, an OS designed to
take full advantage of this new technology by rethinking the
abstractions OSes provide in the context of NVM. Twizzler
divides NVM into objects within a global object space, and
pointers are interpreted in the context of the object in which
they reside. This decouples pointers from the address space of
an individual thread, providing a data-centric programming
model rather than a process-centric one. The resultis a vastly
simpler environment in which the OS’s primary function is to
support manipulating, sharing, and protecting persistent data
using few kernel interpositions.
We implemented a simple, standalone kernel that supports
a userspace for NVM-based applications. with compatibil-
ity layers for legacy programs. We wrote a set of librari
and portability layers that provide a rich environment for ap-
phcalmm 0 access persistent data that takes into account
tics (persistent pointers) and safety (building crash-

change will |
programmability, performance, and simplicity on the table. it
is essential that operating systems and system software evolve
to make the best use of this new technology.

‘These opportunities motivate us to revisit how programs
operate on persistent data. The separation of volatile memory
and high-latency persistent storage at the core of OS design
requires the OS to manage ephemeral copies of data and in-
terpose itself on persistence operations, a penalty that will
consume an increasing fraction of time as NVM performance
increases [64]. The direct-access nature of NVM invites the

consistent data structures). We then performed a case-study
by writing software for Twizzler, taking into account the new
flexibility and power gained by our model and evaluating our
software for complexity and performance. We ported SQLite
toTwizzler, showing how our approach can provide significant
performance gains on existing applications as well.

Ina world where in-memory data can last forever, the con-
text required to manipulate that data is best coupled with the
data rather than the process. This key insight manifests itself
in the three primary contributions of this paper:

USENIX Association

2020 USENIX Annual Technical Conference 65

Twizzler Operating System (2020)

About Pubs Docs Download
People

& Twizzler

Twizzler is a research operating system, written in Rust, designed around the data-centric
programming model. It is built from scratch with a new kernel focused on simplicity to
facilitate direct access to shared, persistent data for applications with minimal OS
involvement and interposition. Twizzler is motivated by the convergence of the memory
hierarchy for traditionally "far away" memory, brought about by the increasing closeness of
persistent and distributed memory. Twizzler is developed by the CRSS at UC Santa Cruz.

For more information, see our Publications or our Documentation.

https://twizzler.io/

70

https://twizzler.io/

Ephemera/ OxDEADBEEF
Key P ro b I ems process vaddr

space

1. NVM are fast

a. Should you involve the kernel in data access path? file isiseaadneaa
aawe
b. How do you involve kernel? sys_calls Vrite syscall

2. Two-level storage hierarchy
a. Explicit serialization-deserialization

b. Constant data format changes (in-memory or on storage)
c. Takestime

3. Addressing data in memory? (which memory?)
a. Pointers
b. Pointers are only valid with a process
c. Process are ephemeral, hence pointers are ephemeral
d. How to identify data in NVM outside a “process"?

Kernel / FS

[123 |[we44 || dadae |

File on storage

If these sounds like philosophical questions - then you should realize the
magnitude of such changes in the systems research! 71

Twizzler OS

Thin, Exo-kernel style OS kernel

e Does scheduling, synchronization, and management
LibraryOS, libtwz

e Does mapping management and persistent pointers
Backward-compatible twix library

e Converts classic syscalls into function calls (libc)
e read and writes, become memcpy

Twizzler: a Data-Centric OS for Non-Volatile Memory, USENIX ATC 2020, https://www.usenix.org/conference/atc20/presentation/bittman

data
object

direct access
(memory-style)

application

musl* (libc) H

POSIX access Linux syscall
(read/write) emulation :

¥ o
metadata & FOT . view. managemgnt,
libtwz pointer translation,
management

consistency primitives
A userspace

¥y kernelspace

object & thread
create, delete, etc. .
: : Twizzler kernel management, trusted
physical mapping

computing base

* modified musl to change linux syscalls into function calls

72

https://www.usenix.org/conference/atc20/presentation/bittman

Key Ideas

Leverages persistent object ideas of NV-Heap

e Have 128-bits persistent objects Pointer Forign Ot Tble
[1 A 2
o create, delete object syscall [2] offset] |—~2| = ﬂ::z Object B
o Objects can be 4KB to 1GB 3[C | flags | d?rta

o Can contain either the full B+ tree or just node
e Kernel and user application share “views” (eqv. of reg/resp on the vspace

management)
o When a fault happens, the handler maps objects in the requested view slots
o Leverages existing virtual memory mechanism
e Allow cross-object “thin” pointers using a Foreign Object Table (FOT)

o Pointers are still 64 bits (object id + offset)
o Allows late binding of objects and cross object references (this wasn't allowed in NVHeap)

More details in the paper ...an interesting read

73

What You Should Know From This Lecture

1. NV memory (Optane) integration options
2. Optane ballpark performance numbers
3. Concerns with the integration of NVRAM

a. How do they integrate into the caching hierarchy
b. Various options to write back
c. Whatis ADR (eADR) and why is it necessary

4. Basic idea of a NVRAM file system (e.g., ctFS)
Basic idea and challenges in building a persistent heap (NVHeap)
6. PMDK and pmem project, and what do they do and what they provide

U

This is a very active area of research as the real hardware becomes available

74

More work (Persistent Data Structures).

Pronto: Easy and Fast Persistence for Volatile
Data Structures

Ami

aman Memaripour* J

eph Lraclevitz

Steven Swanson

University of California. San Diego University of Colorado Boulder University of California. San Diego

wucsd.edu

amemaripieng.uesd.edu

Abstract

Non-Volatile Main Memories (NVMMs) promise an op-
portunity for fast, persistent data structures. However,
building these data structures is hard because their data
must be cousistent in the wake of a failure. Existing methe
ods for building persistent data structures roquire either
in-depth code changes to an existing data structure using
an NVMM-aware library or rewriting the data structure
from scratch. Unfortunately, both of these methods are
labor-intensive and error-prone.

Pronto is & new NVAM library that reduces the pro-
gramming effort roquired to add persistence to volatile
data structures using asynchronous semantic logging
(ASL). ASL is generic enough to allow programmers
to add persistence to the existing volatile data stru
ture (e.g., C++ Standard Template Library (um.....vh)
with very little programming offort. Furth
moves most durability code off the critical path,1
our evaluation shows Pronto data structures outperform
highly-optimized NVMM data structures written with
other libraries by a large margin.

CCS Concepts. + Hardware - Emerging tech-
nologies: + Software and its englneerlng 5 Soft-
ware lbrarfea and fon ays-

ACM Reference Format:
mirsaman Memaripour, Jaseph Izraclevitz. and Steven
ronto: Easy and Fast Persistence for Volatile
Data Structures. In Proceedings of the Tuenty-Fifth Interna-
tional Conference on Architectural Support for Programming
and Operating Systems (ASPLOS '20). March
Suitzerland. ACM, '\ow\ulk NY,

1 Introduction

Emerging non-volatile main memory (NVMM) technolo-
sgies such as 3D XPoint [14, 23] offer higher density than

DRAM with comparable latency and bandwidth, allow-

ing computer architects to attach them to processors via
the memory bus. Programs can then use load and store
instructions to access persistent data directly. Bypass-

2 the storage stack and directly acce
ssential for unleashing the performance benefits that
NVMMSs offer [48]. Howewer, this strategy requires care-
ful reasoning to ensure a consistent-state in NVMM
in the wake of a crash data in the caches will not
survive (28, 36].

NVAMs appear to be an exceptional opportunity for
building fast. per: ent, data structures, and researchers

ng NVMM is

{aie <& Data stfuctines; £ Compilas syatains
organization - Processors and memory architec-
tures.

Keywords. Non-volatile Memory. Persistent Memory.
Persistent Objects, Data Structures, Storage Systems,
Snapshots, Asynchronous Logging, Semantic Logging

Phe author is now at MongoDB, Inc.

Permision 1o make digital or bard copics of part or all of thix
work for persomal or clsroom we i granted without ke provided
that copies are pot made or distributed for profit or comme
advantage and that copies bear this ntice and the full itation on

ial

the first pags. Copyrights for third-party components of this vork
must be henored. For all other uses, contact. the owner /author(s)
ASPLOS '20, March 16-20, 2020, Lausanne, Switzeriand
©2020 Copyright held by the owner fautbor(s).

ACM ISBN 978-1-4503-7102.5/20

bttps://doi org/10.1145/337:

have this problem in two ways, NVAMAM
failure-atomicity libraries (e.z., [11, 51]) allow program-
mers to delineate failure-afomic updates to persistent
ta - writes within the update become persistent all at
once. By identifying failure-stomic code regions and per-
sistent writes, programmers can adapt an existing data
structure to NVMM using these libraries 6, 12]. Alter-
natively, researchers hawe built custom data structures
from scrateh for NVMM (e.g., [43, 5]). Unfortunately,
both of these design options are labor-intensive, require
detailed program knowledge, and are a fertile source of
subtle errors [54]. Furthermare, these options effectively
ignare the wide range of useful, volatile data structures
currently awilable (... the C4-+ Standard Template
Library or the Java Collection data structures).

In this work, we propase Pronto, a library that reduces
the programming effort required to add persistence to
off-the-shelf, volatile data structures, preserving the orig-
inal operation of the data structure and, for concurrent

MOD: Minimally Ordered Durable Datastructures for
Persistent Memory

Swapnil Haria®

Mark D. Hdl

Michael M. Swlﬂ

University of Wisconsin-Madison ~ University of

University of W

swapnilh@cs wisc.cdu

Abstract CCS Coneepts. - Software and its engineering —» Soft-
Persistent Memory (PM) makes passible recoverable appli- Ware libraries and repositorics; Software fault toler-
cations that can preserve application progress yst D i -
reboots and power failures. Actual ility requires Storage class memory.

careful ordering of cacheline flushes, currently done in two Keywords. crash-consi v durability, per-
extreme ways. On one hand, expert programmers have rea- Sistent memory.

soned decply sbout consstency and durablty Lo create ap-
d on a singl

structure. On the other hand, less-expert programmers have

used software transaction memory (STM) to make atomic

ACM Reference Format:

‘Swapnil Haria, Mark D. Hill, md Mrhul M Swift. 2020. MOD:
Minimally Ordered Durable Data: for Persistent Memory.
In Proceedings of the Twenty-Fifth gdsints Conference on G

one or more updates, albit at a signific cost
due largely to ordered log updates

In this work, we propose the middle ground of composable
persistent datastructures called Minimally Ordered Durable
datastructures(MOD). We prototype MOD as a library of C++
datastructures—currently, map, set, stack, queue and vector—
that often perform better than STM and yet are relatively
casy to use. They allow multiple updates to one or more
datastructures to be atomic with respect to failure. More-
over, we provide a recipe to create additional recoverable
datastructures.

MOD is motivated by our analysis of real Intel Optane
PM hardware showing that allowing unordered, overlapping
flushes significantly improves performance. MOD reduces
mdmng by ld.yhng isting techriques for out-of place

paging) structural

for Programming L
(ASPLOS '20), March 16-20, 2020, Lausanne, Switzerland. ACM.Mw
York, NY, USA, 14 pages. hitps://doi org/10.1145/3373376.3378472

1 Introduction
Persistent Memary (PM) is here—Intel Optane DC Persistent
Memory Modules (DCPMM) began shipping in 2019 [21
Such systems expose fast, byte-addressable, non-volatile
memory (NVM) devices as main memory and allow appli-
cations to access this persistent memory via regular load/-
store instructions. In fact, we ran all experiments in this
paper on a system with enginecring samples of Optane
DCPMM (22, 23).

‘The durability of PM enables revoverable applications that
preserve in-memory data beyond process lifctimes and sy:
fem cahes s deible q\n.lll)' for workloads like databases,

P

runclmnal MOD exposes a Ba-
sicinteface o single updates and a Composition interfacefor
atomically performing multiple updates. Relative to widely
used Intel PMDK v1.5 STM, MOD improves map, set, stack,
queuc microbenchmark performance by 40%, and specds up
application benchmark performance by 38%.

“Now st Goagle

Permission to make digital or hard copies of all or part of this work for
personal or classroom s is granted without fec provided that copics
are not made or distributed for profit or commercial advantage and that
copies bear this notie and the full ciation on the first page Copyrights
for components of this work owned by others than the authorts) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish

a foe Request
ASPLOS 20, Mardh 16-20, 2020 Lausarme, Swicerand
® hed by icensed

to ACM.
ACMISEN 978-1-45037102-5120/03.__$15.00

data structures, their scheme.

145/ 3763378472

Key-val 4
28], Such Apph(nlmns use cacheline flush instructions to
move data from volatile caches to durable PM and order
these flushes carcfully to ensure consistency. For instance,
applications must durably update data before updating &
persistent pointer to the data, or atomically do both.

However, few recoverable PM applications have been de-
veloped so far, though libraries like Mnemosyne [46] and
Intel Persistent Memory Development Kit (PMDK) [19] have
existed for several years. Currnly there are two approaches
to building
structures (e.g., persistent thrces [s, “, ul) or general-
purpose transactions. Both approaches have some benefits,
‘ut we believe that neither is suitable for developers building
new PM applications.

Although custom datastructures are typically fast, signifi-
cant effort is needed in designing these structures to ensure
that updates are performed atomically with respect o failure,
ie, either all modified data is made durable in PM or none.

Corundum: Statically-Enforced Persistent Memory Safety

Morteza Hoseinzadeh
University of California, San Diego
San Diego, California, USA
mhoscinzdeh@cs.ucsd.edu

ABSTRACT
Fast, byte-addressable, persistent main memories (PM) make it
possible to buikd complex data structures that can survive system
failures. Programming for PM is challenging, not least becanse it
combines well-known programming challenges like locking, mem-
ory management, and pointer safety with novel PM-specific bug
types. It also requires log ging updatesto PM to facilitate recovery
after erash. A misstep in any of these areas can cornupt data, leak
resources, or prevent successful recovery after a erash Existing PA
libraries in 4 variety of languages — C, C++, Java, Go - simplify
these problems, but they still require the programmer to
learn (and flawlessly apply) complex rules to ensure correctness.
Opportunities for data-destroying bugs abound.

“This paper presents Corundum, 4 Rust-based library with an
idiomatic PM programming interface and leverages Rust's type
system to statically avoid most common PM programming bugs.
Corundum lets programmers develop persistent data structures
using familiar Rust constructs and have confidence that they will

free of those bugs. We have implemented Corundum and found
its performance to be as good as or better than Intel's widely-used
PMDK library. HP's Atlas, Mnemosyne, and go-pmem.

CCS CONCEPTS
. fon ysiens s Surago .+ Software
Sl

testing and ann,. Hardware — Non-volatile memory.

KEYWORDS

non-vlatile memory programming library, static bug detection,
crash-consistent programming

ACM Reference Format:
Morteza Hoseinzadeh and Steven Swanson 2021 Corundum: Statically-
forced Persistent Memory Safety. In Proceedings of the 26th ACM Interna-
tional Confrence on Architectural Support for Programming Larguages ard
Operating Systems (ASPLOS '21), Aprdl 19-23, 2021, Virtual USA. ACM
York, NY, USA, 14 pages_ hitps.idoiorg/ 1011453645814 3446710

1 INTRODUCTION

Persistent main memory (PM) is the first new memory technol-
oy to arrive in the memory hierarchy since the appearance of

Steven Swanson
University of California, San Diego
San Diego, California, USA
swanson @esuesd.cdu

DRAM in the ealy 190WAPM dlfenseniroin orenial b
fits including is
and higher- mmw.dm elative 1o ik sed storage, and a uni-
fied and volatile

Howeves it alao poses host of novel challenges Fonn!(au:e it
requires memory controller and ISA support, new operating system
facilities, and it places large, new burdens on programmers.

g challenges it poses are daunting and stem
igh-perfomance, and direct con-
nection to the processor's memory bus. PM's raw performance
demands the removal of system software from the common-case
access path, its non-volatility requires that (if it is to be used as
storage) updates must be robust in the face of system failures, and
its memory-like interface forces application software to deal di-
rectly with issues like fault tolerance and error recovery rather
than relying on layers of system software.

In addtion, programming wih M exacertaes the impact of
existing types of bugs and introduces novel classes of program-
‘ming errors. Common errors like memory leaks, dangling pointers,
concurrency bugs, and data structure corruption have permanent

b N 1

sible: A programmer might forget to logan update 1o a persistent
structure or ereate a pointer from 4 persistent data structure to
volatile memory. The former error may manifest during recovery
while the latter is inherently unsafe since, after restart, the pointer
to volatile memory is meaningless and dereferencing it will result
in (at best) an exception.

The challenges of programming correctly with PM are among
the largest potential obstacles to wide-spread adoption of PM and
our ability to fully exploit its capabilities. If programmers cannot
relisbly wiite and modify code that correctly and safely modifies
persistent data structures, PM will be hobbled s a storage technol-
ogy.

Some of the bugs that PM programs suffer from have been the
Sibjectlyeate o esearc il ke o bl The i

hes o these probls
d.m;im toimproved library support to dehugglng tools to pro-
gramming language facilities.
the enhanced importance of memory and concumency er-
rors in PM programming, it makes sense to adopt the most effective
andrelisble mechanisms available for avoiding them.

The

b /ooy 10115 A1 46T

10 avoida host of common memory and concur-
ency errors.I nd" -
allow the Rust compiler to statically prevent data races, synchro-
nization errors, and mast memory allocation errors. Fusther, the

the resulting ith that
of complled C or Cs-+. In addtion to these buil-in static cheeks,
Rust also provides facilities that make it easy (and idiomatic) to

75

More work (P

Pronto: Easy and Fast Persistence for Volatile
Data Structures

Amirsaman Memaripour®
University of California,

Joseph Eraclevitz
San Diego University of Colorado Bnul(ln er

Steven Swanson
University of California, San Di¢

amemaripteng.uesd.edu joseph.iz

Abstract

Non-Volatile Main Memories (NVMAMs) promise an op-
portunity for fast, persistent data structures. Howewer,
building these data s their data
st be consistent in the wake of a failure. Existing meth-
ods for building persistent data structures requi
in-depth code changes to an existing data structure using
an NVMMeaware library or rewriting the data struc
from scratch. Unfortunately, both of these methods are
labor-intensive and error-prone.

Pronto is & new NVAM library that reduces the pro-
gramming effort roquired to add persistence to volatile
data structures wing asynchronous semantic logging
). ASL is generic enough to allow programme
to add persistence to the existing volatile data struc-
ture (e.g., C++ Standard Template Library containers)
with very little programming effort. Furthermore, ASL
moves most durability code off the critical path, and
onr evaluation shows Pronto data structures outperform
highly-optimized NVMM data structures written with
other libraries by a large margin.

CCS Concepts. + Hardware - Emerging tech-
nologies: + Software and its engilmring s Soft-
ware i 1 i ion sys-

(s

ucsd. edu

ACM Reference Format:
mirsaman Memaripour, Jaseph lzraclevitz, and §
Swason. 2020. Pronto: Easy and Fast Persistence for V¢
Data Structures. In Proceedings of the Tuenty-Fifth Inf
tional Canference on Architectural Suppost for Progran
Languages and Operating Systems (ASPLO.
16-20, 2020, Lausanne, Switzerland. ACM, N
US fdoi.org/10.1145

. 18 pages. https:

1 Introduction
Emerging non-volatile main memory (NVMM) ted
sgies such as 3D XPoint [14, 23] offer higher density,
DRAM with comparable latency and bandwidth, §
ing computer architects to attach them to processof
the memory bus. Programs can then use load and|
fons to access persistent data di
ing the storage stack and directly accessing NV
atial for unleashing the performance benofits
NVMNMs offer [48]. Howewer, this strategy requires
ful reasoning to ensure 4 cansistent-state in NY
in the wake of a crash — data in the caches wil
survive (28, 36].

NVMMs appear to be an exceptional opportunil
building fast. persistent, data structures, and resean

tems -+ Data structures: « Cumpum systems
organization - Processors and memory archit ec-
tures.

Keywords. Non-volatile Memory, Persistent Memory.
Persistent Objects, Data Structures,
Snapshots, Asynchronous Logging, Semantic Log

thor is now at MongoDB, Inc.

Permission to make digital or hard copies of 1
work for personal or clastoom we & granted wit o
that copies are pot made or distributed for profit or commercial
adwantage and that copies bear this notice and
the fmt pag. Copyrighte fo thirdparty componcate of this vork
must be henored. For all other uses, th uthor(s)
ASPLOS 20, Mardh 16 _m. ausanne, Switzerland
©2020 Copyright held by the avber author(s).

ACM 78145087
https://doi or/10.114

t or all of this
ke ded

the full citation on

have this problem in two ways. NV
failure-atomicity libraries (e.., [11, 51]) allow prof
mers to delineate failure-afomic updates to persi
data - writes within the update become persistent |
lentifying Bilure-atomic code regions ang
sistent writes, programmers can adapt an existing
M using these libraries (6, 12]. 1
el researdhers have built custom data strud
from scrateh for NVMM (e.g., [43, 5]). Unfortun|
both of these design optious are labor-intensive, ra
detailed program knowlodge, and are a fertile sour
54]. Furthermare, these option:
ignore the wide range of useful, volatile data strug
currently awailable (e.g., the C+4-+ Standard Tem)
Library or the Java Collection data structures).
In this work, we propase Pronto, a library that req
the programming effort required to add persisten
off-the-shelf, volatile data structures, preserving the
inal operation of the data structure and, for conc
data structures, their concurrency scheme. Further)

"

AGAMOTTO: How Persistent is your Per

Ian Neal
University of Michigan

Youngjin Kwon
KAIST

Andrew Quinn
University of Michigan

Abstract

Persistent Memory (PM) can be used by applications to
directly and quickly persist any data structure, wnhout the
overhead of a file system. However, writing PM appli

Ben Reeves
University of Michigan

University of Texas at Austin

ARTIFACT ARTIFACT
EVALUATED EVALUATED

&

ARTIFACT
EVALUATED

@

istent Memory Application?

Ben Stoler
University of Michigan

Baris Kasikci
University of Michigan

Simon Peter

of capacity [3]. As byte-addressable memory PM can dlso be
accessed via p load and store i
tion developers have already started building

that are simultaneously correct and efficient is challenging. As
aresult, PM applications contain and

bugs. Prior work on testing PM systems has low bug coverage
it relies primarily on extensive test cases and developer
annotations.

In this paper we aim to build a system for more thoroughly
testing PM applications. We inform our design using a de-
tailed study of 63 bugs from popular PM projects. We identify
two application-independent patterns of PM misuse which
ount for lhe majority of bugs in ou |udy and can be de-
tected . The specific bugs
can be detected using compact custom oracles provided by
developers.

We then present AGAMOTTO, a generic and extensible
system for discovering misuse of persistent memory in PM
applications. Unlike existing tools that rely on extensive test
cases or i AGAMOTTO s i executes PM
systems to discover bugs. AGAMOTTO introduces a new sym-
bolic memory model that is able to represent whether or not
PM state has been made persistent. AGAMOTTO uses a state
space exploration algorithm, which drives symbolic execution
towards program locations that are susceptible to per:
bugs. AGAMOTTO has so far identified 84 new bugs in 5 dif-
ferent PM applications and frameworks while incurring no
false positives.

1 Introduction

Pers

ent Memory (PM) is a promising new lechnology lhdl
offers an perfor tradeoff for

developers PM technologies, s Intel Optane DC [36].
can offer persistent memory accesses with latencies that are
only 2-3x higher than the latencies of DRAM [70]. More-
over, such PM technologies are cheaper than DRAM per GB

PM dmax.lly. wnlhou(relymg on heavyweight syste
ensure d A ding ports of popular systems such as
memcached [24] and Redis [21].

While using PM directly via persi data can

Ires)...

1: Statically-Enforced Persistent Memory Safety

ia Hoseinzadeh
{California, San Diego
o, California, USA
adch@ecs.ucsdedu

fent main memories (PM) make it
{ tructures that ean survive system
lis challenging, not least becanse it

offer performance, it is challenging to write PM-based appli-
cations that are simultaneously correct and efficient [12, 18,
33,52,54,60,71,76]. Persistent memory writes in the CPU
cache must be explicitly flushed to PM using specific instruc-
tions or APIs. In certain cases, PM flush operations need to
be ordered using memory fences to enforce crash consistency.
Incorrect usage of these can result in y
hugr which break crash-consistency guarantees or degmde

like locking, men-
{safety with novel PM-specific bug
updatestoPM to facilitate recovery
lof these areas can cornupt data, leak
Irecovery after a erash Existing PA
Bges - C,C=+, Java, Go - simplify
ey still equire the programmer to
bmplex rules to ensure correctness.
fing bugs abound

dum, a Rust-based library with an
Bterface and leverages Rust's type
§t common PM programming bugs.
dmxop persistent data :lmmles

performance. P y bugs are

to diagnose because their symptoms are easily masked. For
example, crash-consistency bugs may be masked because PM
writes are implicitly flushed when dirty (or updated) cache
lines are evicted from the CPU—furthermore, flushes which
are required for proper crash consistency under one execu-
tion path may be redundant and unnecessary under a different
program execution path, leading to performance degradations.
Several systems have been built to aid with testing PM
applications; however, these existing approaches are either
specific to a target application or require significant manual
developer effort. Intel designed Yat [44] and pmemcheck [65]
specifically to test the crash consistency and durability of
PMEFS (Persistent Memory File System) [27] and PMDK
(Persistent Memory Development Kit) [20], respectively. To
find bugs, Yat exhaustively tests all possible update orderings,
and pmemcheck tracks annotated updates. Both of these tools
are specific to a single system (PMFS and PMDK, respec-
tively) and are hard to generalize. Other tools like Persistency
Inspector [62], PMTest [50], and XFDeleuor [49] are dppll

they will
u.nplamemud Coruntum and ound
s or better than Intels widely-used
fmosyne. and go-pmenn.

torage class memory; + Software
lalsoftware verification: Software
ware — Non-volatile memory.

pming library, static bug detection,
f

| Swanson. 2021 Corundum: Statically-
 In Procredings of the 26th ACM interna-
Support for Programming Languages and
pril 19-23, 2021, Virtual USA. ACM. New
1011653445814 34467 10

) is the first new memory technol-
hierarchy since the appearance of

Steven Swanson
University of California, San Diego
San Diego, California, USA
swanson @esuesd.cdu

DRAM in the early 1970's. PM offers numerous potential bene-

fits including improved memory system capacity, lower-latency

and higher-bandwidth relative to disk-based storage, and a uni-

fied and volatile

Howeves it alao poses host of novel challenges rmmmu it
es memory controller and ISA support, new operating system

facilities, and it places large, new burdens on programmers.

The programming challenges it pases are daunting and stem
directly from its non-volatility, high-performance, and direct con-
nection to the processor's memory bus. PM's raw performance
demands the removal of system software from the common-case
access path, its non-volatility requires that (if it is to be used as
storage) updates must be robust in the face of system failures, and
its memory-like interface forces application software to deal di-
rectly with issues like fault tolerance and error recovery rather
than relying on layers of system software.
programming with PM exacerbates the impact of
existing types of bugs and introduces novel classes of program-
‘ming errors. Common errors like memory leaks, dangling pointers,
concurrency bugs, and data structure corruption have permanent

New -
sible: A programmer might forget to logan upthk 1o a persistent
structure or ereate a pointer from 4 persistent data structure to
volatile memory. The former error may manifest during recovery
while the latter is inherently unsae since, after restart, the pointer
to volatile memory is meaningless and dereferencing it will result
in (at best) an exception.

The challenges of programming correctly with PM are among
the largest potential obstacles to wide-spread adoption of PM and
our ability to fully exploit its capabilities. If programmers cannot
relisbly wiite and modify code that correctly and safely modifies
persistent data structures, PM will be hobbled s a storage technol-
ogy:

Some of the bugs that PM programs suffer from have been the
Sibjectlyeate o esearc il ke o bl The i

hes o these probls
dmphm to improved library support to dehlnglng tools to pro-
gramming language facilities.

Given the enhanced importance of memory and concumency er-
rors in PM programming, it makes sense to adopt the most effective
andrelisble mechanisms available for avoiding them.

The

ble to general PM systems, but require d
and ive test suites to th hly test PM li

In order to determine the extent to which persistency bug
finding can be automated (i.e., not require program annota-

USENIX Association

14th USENIX Symposium on Operating Systems Design and Implementation 1047

1o avoida host of ommon memory and concua-
rency errors.I nd"

o the Rust ompiler 1o satclly prevent data races. ynchro-
nization errors, and mast memory allocation errors. Fusther, the

bsa the resulting with that
eborts) of compiled C or Cov. In addtion o these bl in state checks,
) Rust also provides facilities that make it easy (and idiomatic) to
5

76

Further Reading

1.

DRAM internals,
https://course.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:lectures:onur-740-fall11-lecture25-mainmemory.pdf
Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better
I/0 through byte-addressable, persistent memory. In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles (SOSP '09).

Amirsaman Memaripour, Joseph Izraelevitz, and Steven Swanson. 2020. Pronto: Easy and Fast Persistence for Volatile Data
Structures. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS '20).

Virendra J. Marathe, Margo Seltzer, Steve Byan, and Tim Harris. 2017. Persistent memcached: bringing legacy code to
byte-addressable persistent memory. In Proceedings of the 9th USENIX Conference on Hot Topics in Storage and File Systems
(HotStorage'17). USENIX Association, USA, 4.

Swapnil Haria, Mark D. Hill, and Michael M. Swift. 2020. MOD: Minimally Ordered Durable Data structures for Persistent Memory. In
Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS '20).

Dushyanth Narayanan and Orion Hodson. 2012. Whole-system persistence. In Proceedings of the seventeenth international
conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS XVII).
http://cseweb.ucsd.edu/~swanson/Pubs.php

Lu Zhang and Steven Swanson. 2019. Pangolin: a fault-tolerant persistent memory programming library. In Proceedings of the 2019
USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '19). USENIX Association, USA, 897-911.

Daniel Bittman, Peter Alvaro, Pankaj Mehra, Darrell D. E. Long, Ethan L. Miller, Twizzler: a Data-Centric OS for Non-Volatile Memory,
USENIX ATC 2020, https://www.usenix.org/system/files/atc20-bittman.pdf

77

https://course.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:lectures:onur-740-fall11-lecture25-mainmemory.pdf
http://cseweb.ucsd.edu/~swanson/Pubs.php
https://www.usenix.org/system/files/atc20-bittman.pdf

Examples on Github

libpmem
libpmem2
libpmemblk
libpmemlog
libpmemobj++
libpmemobj
libpmempool
librpmem

pmreorder

C B R ERF R EECN

.gitignore

¥ master + pmdk/src/examples /

".:" bdemsky and pbalcer examples: add a NULL check in btree example

common: change SDK version needed by PMDK to 10.0.17134.12
examples: rework usc example to use deep flush

common: fix format of SPDX tag in all files In the repo

common: fix format of SPDX tag in all files in the repo

common: remove cpp bindings - sources

examples: add a NULL check in btree example

common: use SPDX license identifiers, for files copyrighted by Intel ...

examples: fix type signedness warnings

common: use SPDX license identifiers, for files copyrighted by Intel ...

common: Makefiles refactoring

Go to file Add file »

fa6d6d7 19 hours ago O History

7 months ago
2 months ago
3 months ago
3 months ago

2 years ago
19 hours ago
9 months ago
6 months ago
9 months ago

6 years ago

78

NOVA: A Log-structured File System for Hybrid Volatile/Non-volatile Main

Memories (2016)

NOVA: A Log-structured File System for Hybrid Volatile/Non-volatile Main
Memories

Jian Xu

Steven Swanson

University of California, San Diego

Abstract

Fast non-volatile memories (NVMs) will soon appear on
the processor memory bus alongside DRAM. The result-
ing hybrid memory systems will provide software with sub-
microsecond, high-bandwidth access to persistent data, but
managing, accessing, and maintaining consistency for data
stored in NVM raises a host of challenges. Existing file sys-
tems built for spinning or solid-state disks introduce software
overheads that would obscure the performance that NVMs
should provide, but proposed file systems for NVMs either in-
cur similar overheads or fail to provide the strong consistency
guarantees that applications require.

‘We present NOVA, a file system designed to maximize
performance on hybrid memory systems while providing
strong consistency guarantees. NOVA adapts conventional
log-structured file system techniques to exploit the fast ran-
dom access that NVMs provide. In particular, it maintains
separate logs for each inode to improve concurrency, and
stores file data outside the log to minimize log size and re-
duce garbage collection costs. NOVA's logs provide meta-
data, data, and mmap atomicity and focus on simplicity and
reliability, keeping complex metadata structures in DRAM
to accelerate lookup operations. Experimental results show
that in write-intensive workloads, NOVA provides 22% to
216x throughput improvement compared to state-of-the-art
file systems, and 3.1x to 13.5x improvement compared to
file systems that provide equally strong data consistency guar-

Hybrid DRAM/NVMM storage systems present a host of
opportunities and challenges for system designers. These sys-
tems need to minimize software overhead if they are to fully
exploit NVMM’s high performance and efficiently support
more flexible access patterns, and at the same time they must
provide the strong consistency guarantees that applications
require and respect the limitations of emerging memories
(e.g., limited program cycles).

Conventional file systems are not suitable for hybrid mem-
ory systems because they are built for the performance char-
acteristics of disks (spinning or solid state) and rely on disks’
consistency guarantees (e.g., that sector updates are atomic)
for correctness [47]. Hybrid memory systems differ from
conventional storage systems on both counts: NVMMs pro-
vide vastly improved performance over disks while DRAM
provides even better performance, albeit without persistence.
And memory provides different consistency guarantees (e.g.,
64-bit atomic stores) from disks.

Providing strong consistency guarantees is particularly
challenging for memory-based file systems because main-
taining data consistency in NVMM can be costly. Modern
CPU and memory systems may reorder stores to memory to
improve performance, breaking consistency in case of system
failure. To compensate, the file system needs to explicitly
flush data from the CPU’s caches to enforce orderings, adding
significant overhead and squandering the improved perfor-
mance that NVMM can provide [6, 76].

(this is homework)

79

Why do We Need Yet Another File System

Why do we need a new file system for NVMDIMM? File system Append Overhead Overhead
Time (ns) (ns) (%)

1. High software overheads s s i i =

2. CPU may reorder writes NOVA-Strict 3021 2350 350%
a. heed to use fence and flush appropriately SplitFS, SOSP 2019

3. Different atomicity guarantees : page vs 8-bytes or 64-bytes

4. With directly mapped areas (DAX), how do you provide data and metadata consistency?

5. Decrease contention on a shared NVDIMM from multiple cores (cache coherency and
locking overheads)

6. Performance: high concurrency of NVDIMMSs vs block devices

Developed NOVA file system for hybrid DRAM-NVDIMM memories

https://www.usenix.org/sites/default/files/conference/protected-files/fast16 slides xu.pdf

80

https://www.usenix.org/sites/default/files/conference/protected-files/fast16_slides_xu.pdf

NOVA Design and Ideas

CPUT ~ CPU2 ~ CPU3 ~ CPU4
(Vo Vo Vo \
: Free list : : Free list : : Free list : : Free list :
A Log-structured file system oraM | OO i__i_@?gj__i_gﬁ_?@_l_{_@?gj
NVMM i [Journal | : i [Journal | : i [Journal | : i [Journal | :
H H uper | | | |
Each inode has its own log (concurrency s L:Tﬁﬂﬁtlar:i | :\'”°"e,t’f‘,b,'f‘; :\['”f’f‘ﬁﬁa,bﬁ | :\.'Tﬁﬁ‘iﬁb,'? |
. Recovery | 7777 ___"'_"‘ . T
and para”ellsm) node Inode || Head | Tail
Each CPU has its own set of inodes and Inode log 1 N
free ||St tO manage [:] Committed log entry m Uncommitted log entry

Performance: logs in NV memory, and index in DRAM (can be reconstructed)
Smaller log segments (4kB) and implement the log as a link list

Single inode updates (in the inode log), multiple inodes (uses the journal, 64B
entries) 81

Nova : Write Example

File radix tree (root

DRAM /
__________ ___/___ s s s s e
D e
R 1 Old tail | New tail Step3'
k [y T
A A A\ 4
File log <0, 1> <1,2> &2 2%
/ / | ___|Step2
Data 0 Data 1 | Data?2 Data 2 | Data 3
| Step5 | Step 1 i

[_1 File write entry ~ [_] Data page

We are modifying Data2 and add Data3
<write order, number of page affected>

Step 1: find and copy blocks which are
to be updated (Copy-on-write)

Step 2: Add to the file inode log

Step 3: Update the log tail pointer (after
this the write is it durable)

Step 4: Update the DRAM index for fast
lookup

Step 5: Garbage collect old pages

82

Nova Performance Comparison

Va rma|| — Btrfs = Ext4-data

450 . , B NILFS2 [Z3 Ext4-DAX |-
B F2FS EEA PMFS
400} M I Ext4 1 NOVA

350} il .
300 i -
250
200} .

1

=
ul
o

Ops per second (x1000)
o
o

Ul
o
T

o

STTRAM-small STTRAM-large PCM-small PCM-large

For varmail (this workload) : 3.1-216x outperforms other file systems

83

