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Abstract

The performance of large-scale data-intensive applications
running on thousands of machines depends considerably on
the performance of the network. To deliver better applica-
tion performance on rapidly evolving high-bandwidth, low-
latency interconnects, researchers have proposed the use of
network accelerator devices. However, despite the initial en-
thusiasm, translating network accelerator’s capabilities into
high application performance remains a challenging issue.

In this paper, we describe our experience and discuss is-
sues that we uncover with network acceleration using Re-
mote Direct Memory Access (RDMA) capable network con-
trollers (RNICs). RNICs offload the complete packet pro-
cessing into network controllers, and provide direct user-
space access to the networking hardware. Our analysis shows
that multiple (un)related factors significantly influence the
performance gains for the end-application. We identify fac-
tors that span the whole stack, ranging from low-level ar-
chitectural issues (cache and DMA interaction, hardware
pre-fetching) to the high-level application parameters (buffer
size, access pattern). We discuss implications of our findings
upon application performance and the future of integration
of network acceleration technology within the systems.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Performance attributes;
C.2.4 [Distributed Systems]: Client/server

Keywords

Network Acceleration; Cache Coherence; Performance;

1. INTRODUCTION
Big Data applications generate, store, and analyze large

volumes of data everyday. Examples of these applications
are instant business analytics, real-time distributed graph
processing, data-intensive scientific computing (e.g., the LHC
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Figure 1: Performance gains of using network ac-
celeration in comparison to the unaccelerated TCP
stack. Positive numbers on the y-axis represent ap-
plication performance gains. Use of a network accel-
erator device does not always translate into a better
application performance. See Section 2.1 for details.

experiment at CERN) and associated supporting applica-
tion frameworks [2, 10, 13]. These data-intensive applica-
tions run in parallel on thousands of machines inside a large,
heavily networked environment such as data centers. Conse-
quently, the performance of these applications depends con-
siderably on the performance of the underlying network.

To improve the performance of these applications on rapidly
evolving high-bandwidth (10, 40, 100 Gbps) low-latency (5-
10 µsecs) interconnects, researchers have proposed using net-
work accelerator devices [24, 14]. Remote Direct Memory
Access (RDMA) is a network acceleration technology that
offloads the packet processing into the network controller
and provides safe userspace access to networking resources.
Data is transmitted and received directly from userspace
application buffers. Together, these properties provide high-
bandwidth low-latency data transfer between systems with a
very low CPU footprint. Furthermore, RDMA is also shown
to be power efficient [12].

However, translating the advantages of RDMA based net-
work acceleration into application-level performance is chal-
lenging. In this paper we report on our experiences when
using RDMA acceleration for data transfers. We report on
a simple request-response experiment in a server-client con-
figuration. For every client request, the server prepares a
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Figure 2: Interaction sequence among the CPU core,
LLC, DMA access, and Coherence Engine. Line
numbers refer to the code listing in Figure 3.

response buffer and sends it out on the network back to the
client. We use RDMA and the unaccelerated TCP stack in
Linux for data transfers and compare their performances.
Figure 1 shows the performance gains (seen by the client
as improved request completion time) on the y-axis for dif-
ferent sizes of the response buffer (on the x-axis). Positive
numbers on the y-axis represent performance gains for the
end-application using RDMA. Our experiment suggests:

(a) Networked applications can even lose perfor-
mance when using network accelerators in particu-
lar circumstances. The performance implications of com-
plex interactions among sophisticated CPU cores, last-level
caches, and low-latency network controllers are highly ma-
chine specific and are hard to predict. For the same appli-
cation running on different generations of CPUs and NICs
one can observe a wide-range of performance fluctuations,
including performance loss.

(b) Modern network latencies are getting closer
and comparable to architectural overheads. The over-
head of coherence maintenance, cache-misses, DRAM ac-
cess, and CPU stalls significantly influence the performance
of an end-application operating in a low-latency network en-
vironment. Although the exact overhead is workload specific
it is affected by a number of characteristics such as buffer
size, access pattern etc.

In this paper we identify performance factors that span
the whole stack, ranging from low-level architectural issues
(cache and DMA interaction, hardware pre-fetching) to the
high-level application parameters (buffer size, access pat-
tern) and attribute costs to them on our systems. Although
our findings are RDMA and CPU specific, they are illustra-
tive of a growing confusion about performance when using
network accelerator devices. This paper is meant to open
a dialogue about emerging high-performance interconnects,
network accelerators, and their impact on performance.

2. EXPERIMENTS WITH RDMA
Our analysis reveals that application-level latencies seen

by the client are dominated by the buffer preparation step
at the server. Hence, we further investigate the interaction
among various entities involved in the buffer preparation and
transmission steps, namely CPU, last level cache (LLC), and
DMA access to DRAM. Figure 2 illustrates the sequence of

1. char dummy_buff[BUF_SZ], tx_buff[BUF_SZ];

2. /* Until timeout, keep receiving requests */

3. while(!time_out){

4. /* Receive the request from the client */

5. recv_request();

6. for(i=0; i<BUF_SZ; i+=CACHE_LINE_SZ){

7.#if SCAN_MODE == TOUCH

8. /* scan the transmission buffer */

9. scan(tx_buff[i]);

10.#elif SCAN_MODE == NO_TOUCH

11. /* else, scan the dummy buffer */

12. scan(dummy_buff[i]);

13.#endif

14. }

15. /* always send the transmission buffer */

16. send_buffer(tx_buff, BUF_SZ);

17. }

Figure 3: Server-side execution logic.

interaction among the entities on an I/O coherent architec-
ture such as x86.

We start by designing a controlled request-response ex-
periment between the server and the client (as outlined in
Section 1). The client constantly sends a request to the
server in a tight loop without any pipelining. Upon receiv-
ing the request, the server prepares a buffer and transmits
data in the buffer back to the client. The size of the buffer is
variable. In our controlled setup, the preparation is a simple
scan operation on the buffer. In a real-world application, the
preparation step can involve reading data from a persistent
storage and then copying it into the buffer. Figure 3 shows
the code which we implement within the netperf benchmark
framework [16].

We now explain the preparation step in greater detail.
Different buffer preparation configurations give us flexibility
to analyze cache and snoop protocols in a controlled environ-
ment while keeping a uniform CPU load. On the server side,
the preparation step has two modes: Touch and NoTouch.
In the Touch mode, data in a transmission buffer is scanned
using a for loop. In the NoTouch mode, a similar scan is
done on a dummy buffer. The two buffers, transmission
and dummy, are identical but only the transmission buffer
is transmitted on the network (see lines 15-16 in Figure 3).

Furthermore, the scan can be of two types: Read Scan
or Write Scan. A Write Scan emulates a reader-writer
sharing scenario, where the CPU writes and the network
controller reads the buffer. A Read Scan represents a read-

NoTouch Touch

Write
Scan

Modified cache lines
(M) from the dummy
buffer.

Modified cache lines
(M) from the trans-
mission buffer.

Read
Scan

Exclusive cache lines
(E) from the dummy
buffer.

Exclusive cache lines
(E) from the trans-
mission buffer.

Table 1: Content of last-level cache depending on
the mode and the scan type. Modified(M) and Ex-
clusive(E) cache line status represent the MESIF
protocol states.
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Intel Xeon E7520

CPU cores 4×1.8GHz
QPI speed 4.8 GT/sec
L1 cache 64kB, 2.1nsec, 8-ways associativity
L2 cache 256kB, 5.3nsec, 8-ways associativity
LLC 18MB, 22.7nsec, 24-ways associativity
LLC type Inclusive of L1 and L2 caches
Cache line size 64 Bytes
DRAM latency 131nsec
Prefetching Next-line Prefetcher, enabled

Table 2: Architectural properties and configuration
of Intel Nehalem-EX Xeon E7520 CPU.

read sharing of the buffer. The scan access on the buffers
(either transmission or dummy) brings the associated cache
lines into the LLC. To maintain the I/O coherence, trans-
mission of the transmission buffer generates snoop requests
for LLC (see Figure 2). Table 1 summarizes the LLC con-
tent for different combinations of the modes and the scan
types.

2.1 Experiment Methodology and Hardware
We measure the single request completion time (the time

between issuing a request and receiving the complete re-
sponse buffer) at the client as the key performance met-
ric. We use two network transport implementations for the
buffer transmission - unaccelerated Linux in-kernel TCP/IP
and an accelerated RDMA stack. The Linux stack runs on
the host CPU together with the benchmark application. We
calculate performance gains by comparing the request serv-
ing time between the two stacks. TCP performance is mea-
sured under a similar setup by using a modified TCP_RR test
from the netperf test suit. Previously shown Figure 1 com-
pares the performance of the RDMA accelerated stack and
the in-kernel TCP/IP stack under the Touch/Write Scan
configuration for different response buffer sizes.

We perform our experiments on two identical IBM system
x3690 X5 machines containing the Intel X58 chipset with
Intel Xeon Nehalem-EX E7520 CPUs. Table 2 summarizes
architectural parameters for the CPU. Chelsio Terminator4
(T4) RDMA-capable Network Interface Controllers (RNIC)
are used for network acceleration on the 10Gbps Ethernet.
However, we repeated our experiments with Intel NetEffect
network accelerator adapters and found no significant devi-
ations in our findings. We use Linux perf [1] measurement
framework to measure the global coherence events as docu-
mented in the Intel manual [8]. Linux kernel version 3.7.0

is used in all experiments.
All experiments last 60 seconds, and are repeated three

times. We omit reporting variance because reported perfor-
mance numbers have less than 5% standard deviation be-
tween the three runs. To avoid any multi-core coherence
interference, all cores except Core0 are switched off. Core0
and RNIC are the only two entities in the system sharing
the access to the DRAM. Pre-fetching is enabled for all ex-
periments except for Section 3.3.

3. ANALYSIS AND RESULTS
In this section we present our results regarding various

architectural overheads, and attribute costs to them on our
systems. All data transfers in this section use RDMA.

NoTouch Touch Loss

Write 300 µseconds 470 µseconds 56.6%
Read 275 µseconds 315 µseconds 14.5%

Table 3: Latency numbers for a complete request-
response loop, measured at the client side for the
different modes and scans on the server. The re-
sponse buffer size is 256kB.
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Figure 4: The snoop and the LLC hit rates.

3.1 DMA Access and Cache Coherence
We start by analyzing the large performance penalties for

touching the transmission buffer (as any real-world appli-
cation would do). As shown in Table 3, the Touch mode
access results in a 56% and 14% drop in performance for
Write and Read Scans, respectively. In our experiment, the
server always transmits the transmission buffer. To main-
tain coherence, snoop requests for the transmission buffer
are generated when the DMA engine on the RNIC accesses
the DRAM (see steps 3 and 4 in Figure 2). There are two
possible outcomes of a snoop request (a) a snoop miss, when
the LLC does not contain snooped addresses, (b) a snoop hit,
when the LLC contains snooped addresses. As the snoop
requests are always generated for the transmission buffer,
the Touch access has a high snoop hit rate. In the case
of a snoop hit the coherence engine must take appropriate
actions to ensure I/O coherence. Modified cache lines are
evicted and written back (WB) to the DRAM to ensure that
DMA access reads the latest content. In the case of clean
Exclusive cache lines nothing should be done. However, as
we illustrate, the exact actions are implementation specific.

The performance drop for theWrite Scan can be attributed
to cache lines eviction and costly WBs to DRAM. However,
unexpectedly the Read Scan on the transmission buffer also
results in a performance drop. This behavior leads to a fur-
ther investigation about snoop and coherence interaction.
We measure the snoop hit rate by counting the snoop re-
quests that hit the LLC. Similarly, we measure the LLC hit
rate for accesses by the Core0 in the subsequent scan steps.
Figure 4 shows our results. As expected, NoTouch access
results in an LLC hit rate of almost 100%, with a negligible
snoop hit rate. The Touch access results in a snoop hit rate
of almost 100%. The high snoop hit rate evicts the cache
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Figure 5: Performance degradation due to LLC
misses and coherence overhead. The percentage per-
formance drop is calculated by comparing the per-
formances of the Touch access to the NoTouch ac-
cesses.

lines and consequently, further access to the transmission
buffer by the Core0 misses the LLC. The LLC misses are
not capacity or conflict misses, as only cache lines in the In-
valid state are filled. Further analysis reveals that the snoop
requests are of type REMOTE_RFO (remote Request For cache
line Ownership). This ownership request moves Exclusive
cache lines to the Invalid state and discards them. This
state transition resulted in mandatory cache line misses for
the Read Scans.

Summary: Write back of Modified cache lines is costly
on Xeon E7520 due to high memory access latencies. How-
ever, more interestingly E7520’s coherence engine interprets
a DMA read request during the data transmission as a RE-

MOTE_RFO. This request for ownership forces the coherence
engine to evict even clean cache lines. The mismatch be-
tween DMA access intentions and coherence implementa-
tion results in a performance loss for the application where
read-read sharing is expected.

3.2 LLC Misses and Coherence Overhead
In this section we investigate the effect of the buffer size

on the coherence overhead. The buffer size is directly related
to the number of cache lines that need work for coherence
maintenance. Large buffer sizes result in a large number
of cache lines, and consequently add coherence overhead.
For mandatory cache misses (in the case of Write Scan),
accessing a large buffer from DRAM with a cold cache is
also costly. Figure 5 shows the effect of collective penalties
of coherence overhead and cache misses. The y-axis shows
performance degradation when Touch access is compared
to NoTouch access. As shown in the previous section, the
NoTouch access does not have any snoop-hits and maintains
a high cache-hit rate. The Touch access results in snoop-
hits and additional coherence maintenance work. For small
buffer sizes, due to the small number of cache lines, the
cost of coherence maintenance is small and relatively low
compared to the overall network latency. As we increase the
buffer size, this cost increases and becomes the dominant
part of the overhead (4-256kB range). Further down the
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Figure 6: Performance gains due to Next-line hard-
ware pre-fetching.

x-axis, with large buffer sizes the transmission cost on the
10GbE link becomes dominant and shadows the coherence
overhead.

Summary: The shared access of the transmission buffer
between the CPU core and network accelerator brings the
accelerator into the memory coherence domain. Unlike the
well studied (and optimized) behavior of memory sharing
among many CPU cores, the performance implications of
this shared access is not well understood. Different natures
(inclusive or exclusive of L1 and L2) and implementations
(topology, on- or off-chip) of last-level caches make reason-
ing about the performance a difficult problem. The archi-
tectural overheads stemming from cache misses, CPU stalls
etc., have now become comparable to the network latencies.
As illustrated, the (potential) performance gains in a shared
access environment can be easily eclipsed by high architec-
tural overheads.

3.3 Pre-Fetching and Buffer Access Pattern
Write back and (forced) eviction of cache lines result in

mandatory cache misses. Because our benchmark is do-
ing a sequential access (in a for loop) to the transmission
buffer, the Next-line hardware pre-fetcher can fetch subse-
quent cache lines to avoid the high cache-miss penalty. How-
ever, real-world applications have complex data structure
layouts in the transmission buffer, where parts of the buffers
can be transmitted and received. Further, data can be ac-
cessed based on freshness, or urgent interest, e.g., only ac-
cessing the keys in a key-value pair. These types of accesses
are strictly non-sequential and do not activate hardware pre-
fetching. To understand the benefit of sequential access, we
explicitly enabled and disabled pre-fetching in the BIOS.
Figure 6 shows our findings. Hardware pre-fetchers can help
to accelerate the end-application performance when access-
ing the cold transmission buffer but only under restricted
access patterns. The gains from the sequential access (due
to hardware fetching) can be as high as 60%.

Summary: Non-sequential access patterns that do not
match any available pre-fetchers (adjacent-line, DCU streamer
etc.) will not get any performance boost. Unaccelerated
network stacks get benefits from software pre-fetching hints
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(using prefetch family instructions) passed during proto-
col processing and data copying in the kernel. In contrast,
with RDMA, where data is directly transmitted and re-
ceived from userspace, side-effects of DMA access (e.g., cold
cache) are completely visible to the application and cannot
be avoided. Hence, various cache optimization techniques
and large cache sizes are of little help, and factors such as
DRAM access latencies start to dominate performance of
end-applications.

4. DISCUSSION
The distributed execution of application and network code

on network accelerators is a radical departure from the tra-
ditional model, where everything is optimized to be accessed
from a centralized host CPU. Hence, the interaction among
off-chip non-CPU components becomes an important perfor-
mance factor. These off-chip non-CPU components include
shared caches, different coherency engine implementations,
transport links (e.g., Intel QPI) to cores and DRAMs etc.

We realize that our investigation is processor and architec-
ture specific, and therefore it would be wrong to make any
final conclusions regarding the network acceleration tech-
nology. However, our findings do highlight (potential) ar-
chitectural pitfalls, which are usually hidden from high-level
applications while deploying network accelerators in large-
scale environments.

Earlier works discuss network acceleration specifically in
the context of transparent TCP offloading that maintains
the socket interface to applications [15, 6]. Our analysis,
however, is not limited to TCP/Socket interface and has
wider implications. As I/O accelerator devices are becom-
ing part of mainstream computing, I/O latencies are rapidly
becoming closer to architectural overheads. Our findings
have further implications as RDMA I/O interface and se-
mantics are now being investigated even for GPUs [18] and
storage [26].

4.1 Impact on Networked Applications
Various high-performance NoSQL data stores [5, 11, 20]

have been proposed to serve multiple clients. Efforts have
been made to transfer data by leveraging capabilities of
RDMA network acceleration [24, 14]. Such applications that
reportedly enjoy performance gains with RDMA can also ex-
perience performance loss if used with a particular CPU or
chipset in a low-latency environment. Overheads reported
in Section 3.1 affect servers, in Section 3.3 affect clients, and
in Section 3.2 both. Other in-memory data stores [17, 27]
are also susceptible to suffer performance losses. Also, in
a shared environment cluster where storage and compute
nodes are co-located, network serving of data by the stor-
age application can potentially purge warm caches of the
compute applications.

However, certain classes of applications are also less likely
to be affected by reported overheads. Applications which
have limited CPU-NIC interaction such as media stream-
ing (e.g., YouTube), where the CPU brings video data into
the memory once, and network accelerators such as RDMA,
which can be used to serve content repeatedly to multiple
clients [7], are not exposed to the overheads. Another class
of applications are where the non-network part of the appli-
cation, either computation or disk I/O, dominates the over-
all client latencies. These latencies are orders of magnitude
higher (in msecs) than latencies reported in our setup.

4.2 Architectural Implications
In the previous sections, we have illustrated that architec-

tural overheads can eclipse gains from network acceleration
in high-performance environments. The exact overhead cost
is sensitive to a particular implementation of coherence en-
gine, cache-miss cost, write-back and DRAM access laten-
cies etc. Hence, application developers must now be aware
of costs associated with low-level architectural events. With
ever increasing complex NICs and CPUs internals, there is a
growing confusion about performance [22]. Different proces-
sor vendors implement different variations (or even a subset)
of cache coherence protocols. Implementation and cost of ar-
chitectural features can be different even between different
models of the same processor generation [3].

With the high residual transistor count on the CPU chips,
it should now be possible to implement high-performance
NICs on CPU chips [4, 9]. This NIC-CPU integration makes
network a first class citizen of CPUs, with access to all on-
chip resources such as caches and memory controllers. This
access enables a better interaction between caches and net-
work I/O. Furthermore, network access to memories (DRAMs,
caches or even NVRAMs) can be optimized (and reasoned
about) using similar techniques for manycores CPUs. As
there is no final word for high-performance network inter-
faces (hardware and software), it is a challenging task to de-
sign a single chip to meet all demands. However, demands
for very high network performance (100Gbits/sec with less
than 1µsecond latency [21]) necessitate this integration.

Another orthogonal issue is network accelerator integra-
tion in non I/O-coherent architectures, e.g., ARM. In such
architectures, understanding the interaction among non-CPU
components (caches, DMA and coherence) is even necessary
for the sake of correctness. The current OFED RDMA sub-
system on Linux is broken for non I/O-coherent architec-
tures [19].

4.3 Experience
RDMA offers low (5-10µsecs) data access latencies to-

gether with very high data bandwidths (10-40Gbps) with
a negligible CPU load. Due to its unique performance po-
tential it has (again) started to draw a lot of attention from
the systems building community [25, 24, 14, 23]. However,
managing network resources in userspace does expose ap-
plications to low-level hardware details which are usually
hidden in the operating system kernel. For example, in or-
der to reduce cache pollution, Linux uses non-temporal copy
instructions (e.g., movnti) to copy data from user buffers
to SKBs. It also hides the cost of cache misses from ap-
plications by doing pre-fetching and data copy during the
network processing.

Reasoning about RDMA performance requires a good un-
derstanding of CPU, NIC, and architecture internals. Com-
plex off-CPU components, primitive performance monitor-
ing facilities, ambiguous documentation of hardware, and
a limited software support etc. make RDMA performance
analysis a very challenging task.

5. CONCLUSION
In this paper, we documented our experience with net-

work acceleration using RDMA. We have demonstrated that
a number of (un)related parameters can significantly affect
the gains of applications when using network accelerators.
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Unfortunately, there is no silver bullet solution that guar-
antees performance improvements. As we move toward a
heterogeneous computing environment, the use of network
accelerator devices will become more common. This will
change the decade old assumption that all processing and
data access happens from the central CPUs. Thus, instead
of focusing on a high CPU core performance, system ar-
chitects must take a holistic system-wide approach toward
network accelerator integration to achieve application per-
formance boosts.
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