
1

Storage Systems (StoSys)
XM_0092

Lecture 11: CXL and io_uring
Animesh Trivedi

https://stonet-research.github.io/
Autumn 2023, Period 1

https://stonet-research.github.io/

Syllabus outline
1. Welcome and introduction to NVM
2. Host interfacing and software implications
3. Flash Translation Layer (FTL) and Garbage Collection (GC)
4. NVM Block Storage File systems
5. NVM Block Storage Key-Value Stores
6. Emerging Byte-addressable Storage
7. Networked NVM Storage
8. Trends: Specialization and Programmability
9. Distributed Storage / Systems - I

10. Distributed Storage / Systems - II
11. Emerging Topics

2

Today is the last course lecture

3

We survived, it has been quite fun to teach this course

Hope you also had fun and learn a lot of advancements happening in the area of
storage research

In coming days and weeks

● Next Tuesday: Milestone 5 interview - sign up!
● Next Wednesday: Guest Lecture from Nikolas
● Afterwards: Prepare for the exam - Good luck !
● In the End: We will ask for some feedback on the course

○ Me as a teacher
○ Broadly about the course - you can be frank!
○ Want to be the TA next year? https://www.pinterest.com/pin/534732155736634419/

https://www.pinterest.com/pin/534732155736634419/

If you are interested in such research …
Individual research projects (XM_405088)
● 6 or 12 ECTS credits

Master projects / literature study

● Benchmarking the storage benchmarks
● io_uring/CXL research (today’s lecture)
● Integrating NVM(e)/NVMoF storage in ML runtime to train large models

(Swapping Tensors)
● Building computation storage device prototype in QEMU
● Virtualizing ZNS/NVMe devices
● Scheduling I/O operations for workload-specific optimizations
● Your favorite idea … I am broadly open to ideas from your side, pick a paper and lets discuss

4

The triangle of storage hierarchy

5

Tape

Hard disk drive (HDD)

DRAM Memory

CPU cache

CPU
register

Cost: $ / GB

capacity

~0.1ns

1-10ns

~10-100ns

~10-100ms

~100ms-10ses

Access latencies
- cache line granularity
- volatile
- load/store instructions

- Block granularity
- non-volatile
- I/O commands

Recap: From HDDs to Persistent Memories (PMem)

http://pages.cs.wisc.edu/~remzi/OSTEP/file-disks.pdf
https://www.partitionwizard.com/help/what-is-chs.html

6

HDD Flash Optane DRAM

10s ms 100s us 100s ns 10s ns

Cold
storage

http://pages.cs.wisc.edu/~remzi/OSTEP/file-disks.pdf
https://www.partitionwizard.com/help/what-is-chs.html

The (new) triangle of storage hierarchy

7

Tape

Hard disk drive (HDD)

DRAM Memory

CPU cache

CPU
register

Cost: $ / GB

capacity

~0.1ns

1-10ns

~10-100ns

~10-100ms

~100ms-10s

Access latencies

NAND Flash/Optane SSDs

Persistent Memory < 1 usec

~10-100 usec

- cache line granularity
- volatile storage
- load/store instructions

- cache line granularity
- non-volatile storage
- load/store instructions

- Block granularity
- non-volatile
- I/O commands

Multiple Emerging Topics (non-exhaustive)
Domain-specific/specialized storage solutions

Storage virtualization, Disaggregation (end-to-end software-defined-*)

Quality-of-service in Storage Ecosystems (scheduling, multi-tenancy)

Energy Considerations

CPU-free Computing (re-thinking the computing architecture)
● CPU-free Computing: A Vision with a Blueprint | Proceedings of the 19th Workshop on Hot Topics in Operating Systems

Hardware changes: Computer Express Link (CXL)
● Brief motivation and capabilities (without getting into too much hw/PCIe details)

New software APIs: io_uring (Linux, also being ported to other OSes)
● How is it different than other APIs and what options does it provide, performance implications

8

https://dl.acm.org/doi/10.1145/3593856.3595906

The Key Problems 1 / 2

9

The CPU is the center of computing

● direct memory access

● center of coherency

● controller of the devices

and the final coordinator and arbiter

The CPU performance was fast!

The Key Problems 1 / 2

10

Compute offload
(ASIC, DSPs, FP)

Ethernet, WiFi Disk storage

DRAM memory

The Key Problems 1 / 2

11

DRAM memory

(2022) Intel® Xeon® Processor Scalable Family Technical Overview,
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html

CPU cache management is non-trivial and complex
(even with same/similar homogeneous CPU architectures)

https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html

The Key Problems 1 / 2

12

SW

Compute offload
(ASIC, DSPs, FP)

Ethernet, WiFi Disk storage

DRAM memory

SW

SW

The Key Problems 1 / 2

13

SW

Ethernet, WiFi Disk storage

DRAM memory

SW

SW

https://www.eenewseurope.com/en/14336-arm-cores-in-chiplet-based-waferscale-ai-engine/
https://www.techspot.com/article/2176-history-of-the-gpu-part-5/

https://www.eenewseurope.com/en/14336-arm-cores-in-chiplet-based-waferscale-ai-engine/
https://www.techspot.com/article/2176-history-of-the-gpu-part-5/

The Key Problems 1 / 2

14

SW

Ethernet, WiFi Disk storage

SW

SW
DRAM memory

https://www.servethehome.com/what-is-a-dpu-a-data-processing-unit-quick-primer/

https://www.servethehome.com/what-is-a-dpu-a-data-processing-unit-quick-primer/

The Key Problems 1 / 2

15

SW

Ethernet, WiFi Disk storage

DRAM memory

SW

SW

Cost-effective, Energy-efficient, and Scalable Storage Computing for Large-scale AI Applications. ACM Trans. Storage 16, 4, Article 21 (November 2020), 37 pages.
https://doi.org/10.1145/3415580

https://doi.org/10.1145/3415580

The Key Problems 1 / 2

16

SW

Ethernet, WiFi Disk storage

DRAM memory

SW

SW

Cost-effective, Energy-efficient, and Scalable Storage Computing for Large-scale AI Applications. ACM Trans. Storage 16, 4, Article 21 (November 2020), 37 pages.
https://doi.org/10.1145/3415580

How are these two caches
synchronized?

https://doi.org/10.1145/3415580

Cost-effective, Energy-efficient, and Scalable Storage Computing for Large-scale AI Applications. ACM Trans. Storage 16, 4, Article 21 (November 2020), 37 pages.
https://doi.org/10.1145/3415580

The Key Problems 1 / 2

17

SW

Ethernet, WiFi Disk storage

DRAM memory

SW

SW
These accelerators can have :

● Compute elements (specialized - FPGA, or general - ARM)
● Memory elements
● Storage chips
● Multi-level caches
● Outside connectivity

Who manages “coherency”, “data flow”, “configuration”, “management” of
memories/caches/devices here? Software, hardware? Performance?

Cost of development of new APIs, protocols?

https://doi.org/10.1145/3415580

The Key Problems 2 / 2 : CPU - DRAM Coupling

18

SW

SW

SW
DRAM memory

8 GB / DIMM
malloc (1GB)

malloc (2GB)

malloc (0.5GB)

SW
malloc (3GB)

● What happens to the remaining 1.5 GB DRAM?
● Do applications use all the DRAM what they ask for?

The Key Problems 2 / 2 : CPU - DRAM Coupling

19

Very close coupling of CPU-DRAM (1) DRAM technology; (2) Density, capacity; and (3)
Performance

https://frankdenneman.nl/2017/10/03/vsphere-focused-guide-intel-xeon-scalable-family-memory-subsystem/

1. Can not mix and match different DRAM

technologies and generations

2. More performance means more capacity

(need to buy more DIMMs)

3. Limit to how much DRAM can be packed in

a single machine

https://frankdenneman.nl/2017/10/03/vsphere-focused-guide-intel-xeon-scalable-family-memory-subsystem/

The Key Problems 2 / 2 : CPU - DRAM Coupling

20

DRAM is a big power and cost factor in data center (up to ~40%)
A big part can remain underutilized
Azure with VMs : on average ~10% (but as high as ~30%)

Pond: CXL-Based Memory Pooling Systems for Cloud Platforms, ASPLOS 2023, https://doi.org/10.1145/3575693.3578835
TPP: Transparent Page Placement for CXL-Enabled Tiered-Memory. ASPLOS 2023, https://doi.org/10.1145/3582016.3582063

https://doi.org/10.1145/3575693.3578835
https://doi.org/10.1145/3582016.3582063

The Key Problems 2 / 2 : CPU - DRAM Coupling

Not all pages allocation are used uniformly:

(1) Only a small fraction of memory is accessed in 1-2 minutes window
(2) For Web, almost 80% of the pages are re-accessed within a ten-minute interval but for

warehouse it is 20%.
 (do they all have to be in DRAM?)

21Pond: CXL-Based Memory Pooling Systems for Cloud Platforms, ASPLOS 2023, https://doi.org/10.1145/3575693.3578835
TPP: Transparent Page Placement for CXL-Enabled Tiered-Memory. ASPLOS 2023, https://doi.org/10.1145/3582016.3582063

https://doi.org/10.1145/3575693.3578835
https://doi.org/10.1145/3582016.3582063

Summary Problem
There has to be a better way to

● Manage non-CPU memories and caches (accelerators)
● Manage CPU-attached memories (allocation, disaggregate from the CPU)
● Expand beyond the CPU-attached memories

+ Think of non-volatile memories …
● Persistent memories
● Fast storage

Solution : Compute Express Link (CXL) (the last protocol we will ever need)

22

Computer Express Link (CXL)
A cache coherent Interconnect between
● The CPU
● Accelerators
● Memory expansion cards

Asymmetric protocol

A set of standardized protocols defined on the top
of PCIe 5.0 (PHY)
● Runs in the standard PCIe slots
● 32 GT/s, or 4 GB/lane ⇒ x32 card = 128 GB/sec
● Latencies approaching the NUMA CPU (with v6.0)

23
https://www.electronicdesign.com/technologies/embedded/article/21162617/cxl-coherency-memory-and-io-semantics-on-pcie-infrastructure
https://www.xda-developers.com/pcie-5/
https://www.rambus.com/blogs/pcie-6/

https://www.electronicdesign.com/technologies/embedded/article/21162617/cxl-coherency-memory-and-io-semantics-on-pcie-infrastructure
https://www.xda-developers.com/pcie-5/
https://www.rambus.com/blogs/pcie-6/

Three CXL Protocols
CXL.io
● Mandatory for all hosts, and CXL supported devices
● Discovery, enumerations, capabilities (DMA, interrupts, IOV), and host physical address

configuration
● Same in spirit to what any basic PCIe device would support

CXL.mem
● Enables (only) CPU to access device/accelerator memory in a cacheable manner
● Useful in DRAM expansion
● Device is not initiating any communication

 CXL.cache
● The same as CXL.mem, but now devices can also access the CPU memory/caches
● Additional commands/requests for maintaining coherence among all copies 24

Three Classes of Devices

25https://www.computeexpresslink.org/_files/ugd/0c1418_a8713008916044ae9604405d10a7773b.pdf
https://www.computeexpresslink.org/_files/ugd/0c1418_998df4f459734f319e7a12cc2163b943.pdf

https://www.computeexpresslink.org/_files/ugd/0c1418_a8713008916044ae9604405d10a7773b.pdf
https://www.computeexpresslink.org/_files/ugd/0c1418_998df4f459734f319e7a12cc2163b943.pdf

Three Generations of CXL Protocols

26
● CXL 3.0: Enabling composable systems with expanded fabric capabilities, October 6, 2022,

https://www.computeexpresslink.org/_files/ugd/0c1418_998df4f459734f319e7a12cc2163b943.pdf
● Good overview, https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/hot-chips-cxl-tutorial

https://www.computeexpresslink.org/_files/ugd/0c1418_998df4f459734f319e7a12cc2163b943.pdf
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/hot-chips-cxl-tutorial

What can we do? Expansion of DRAM, CPU-Memory Decoupling (multiple generation of devices),
Memory Pooling and sharing, Single Logical Device (SLD → Exclusive to one CXL root) to Multiple
Logical Device (MLD, connected to multiple CXL roots), Memory hot swapping ...

A look into the CXL device ecosystem and the evolution of CXL use cases,
https://0c141887-fbe4-4ec3-be17-adc8d70d3922.usrfiles.com/ugd/0c1418_037d4ba31f4b44cf9fcb37f5b36ae4d6.pdf

27

https://0c141887-fbe4-4ec3-be17-adc8d70d3922.usrfiles.com/ugd/0c1418_037d4ba31f4b44cf9fcb37f5b36ae4d6.pdf

Design a Distributed Cluster Running CXL

28CXL 3.0: Enabling composable systems with expanded fabric capabilities October 6, 2022
https://www.computeexpresslink.org/_files/ugd/0c1418_998df4f459734f319e7a12cc2163b943.pdf

Multiple type of devices, Global Fabric Attached Memory (GFAM)

https://www.computeexpresslink.org/_files/ugd/0c1418_998df4f459734f319e7a12cc2163b943.pdf

CXL.mem

29
https://www.computeexpresslink.org/_files/ugd/0c1418_998df4f459734f319e7a12cc2163b943.pdf
Hello bytes, bye blocks: PCIe storage meets compute express link for memory expansion (CXL-SSD). https://doi.org/10.1145/3538643.3539745

https://www.computeexpresslink.org/_files/ugd/0c1418_998df4f459734f319e7a12cc2163b943.pdf
https://doi.org/10.1145/3538643.3539745

CXL.mem Expansion Device Example

30

CPU
System DRAM

PCIe BAR

HDM

HDM

System Memory Space

BIOS and other
0x00000000

0xFFFFFFFFF

MMU

Virtual
Address

Memory
Controller

PCIe/CXL
Root

1

2

3

1. PCIe enumeration and BAR mapping with, Host-Managed Device Memory (HDM) areas
2. Setup MMU and allocate the DRAM physical address from this area (software support)
3. Access happens, and the request is routed to the PCIe/CXL root

CXL.mem Expansion Device Example

31

Device Physical Address (DPA)

Multiple configurations (1) striping across multiple devices, ports, roots; (2) allocation units…

DRAM Translation Layer DTL ;)
See the ISCA’23 reference at the end of the slides

Transparent Page Placement (TPP)

PCIe 6.0 latencies and bandwidth are approaching access to a remote NUMA CPU socket

Challenge: How to profile pages (at low-overheads) and put them in the right storage
level in the CXL-enabled memory hierarchy

32Pond: CXL-Based Memory Pooling Systems for Cloud Platforms, ASPLOS 2023, https://doi.org/10.1145/3575693.3578835
TPP: Transparent Page Placement for CXL-Enabled Tiered-Memory. ASPLOS 2023, https://doi.org/10.1145/3582016.3582063

https://doi.org/10.1145/3575693.3578835
https://doi.org/10.1145/3582016.3582063

POND (ASPLOS’23): How to Disaggregate VM Memory

33
Pond: CXL-Based Memory Pooling Systems for Cloud Platforms, ASPLOS 2023, https://doi.org/10.1145/3575693.3578835

https://doi.org/10.1145/3575693.3578835

Where does Storage Come into the Play?
Any device can implement the CXL protocol

● Use SSD as large capacity RAM
● Byte*-addressable
● Persistent

*64B addressable

34https://news.samsung.com/global/samsung-electronics-unveils-far-reaching-next-generation-memory-solutions-at-flash-memory-summit-2022

https://news.samsung.com/global/samsung-electronics-unveils-far-reaching-next-generation-memory-solutions-at-flash-memory-summit-2022

Emerging work: Quantifying and Hiding Flash Latencies

35

Putting SSDs with CXL Memory Expander

36

Which type of device to use? Type-1, Type-2, or Type-3 when using SSD as
memory expander?

Type-3:
● (in CXL 1.0, 2.0): Only one Type-1 or Type-2

device allowed per CXL root, hence Type-3
are more scalable.

● Type-1/2 can be more complex, caches, all load/store requests require checking the
cache states of PCIe storage computing complex

Hence, a Type-3 device type is the ideal CXL device for a “memory expander”

Hello bytes, bye blocks: PCIe storage meets compute express link for memory expansion (CXL-SSD). https://doi.org/10.1145/3538643.3539745
Cache in Hand: Expander-Driven CXL Prefetcher for Next Generation CXL-SSD. https://doi.org/10.1145/3599691.3603406

https://doi.org/10.1145/3538643.3539745
https://doi.org/10.1145/3599691.3603406

CXL + Flash SSDs: Can Flash do it?

Can we use NAND flash SSDs as memory expander?

● What latencies one get with the granularity mismatch?
○ Cache line : 64B, flash pages : 8-16 KiB
○ DRAM: 100s of nanoseconds, vs. flash in 10-100 microseconds

● What is the access pattern for common workloads?
● Can we optimize latencies in any manner? Prefetching, buffering, caching?
● How about flash P/E limitations? Can it endure small 64B writes? 37

CXL-Enabled SSDs - Virtual vs. Physical Addresses

⇒ Shows that the access
pattern at
the virtual address level
do not correspond to
the physical address level

Why?

Just basic prefetching is
not effective to hide
latencies

38
Shao-Peng Yang and others. Overcoming the Memory Wall with CXL-Enabled SSDs, USENIX ATC 2023,
https://www.usenix.org/conference/atc23/presentation/yang-shao-peng

https://www.usenix.org/conference/atc23/presentation/yang-shao-peng

Impact of Caching
Inter-arrival time of 64B requests
has a huge impact

● Queuing delays w/o cache
● Small amount of cache helps (0.5GB)

39

Lots of repeated
accesses for the same
page!

Multiple 64B requests go
into the same flash page
(Keep track of it)

Workload-level Performance

40

3.1 years (min) with the workloads
SLC flash, 100K P/E)

Can hide
high flash
latencies

41

Tape

Hard disk drive (HDD)

DRAM Memory

CPU cache

CPU
register

Cost: $ / GB ~0.1ns

1-10ns

~10-100ns

~10-100ms

~100ms-10s

NAND Flash/Optane SSDs

Persistent Memory < 1 usec

~10-100 usec

The New(er) Triangle of Storage-Memory Continuum

Local CXL Mem
150-300 nsecs

Remote CXL Mem
~1-2 usecs

Local CXL SSDs
1 -10 usec

Remote CXL SSD
10-100 usec

Instead of discrete steps, it is a continuous spectrum now: Continuum

io_uring : What is it and why you should care?

What is io_uring?, https://unixism.net/loti/what_is_io_uring.html
42

https://unixism.net/loti/what_is_io_uring.html

The Long Debate: How to get Concurrency?
Threads versus Events (Asynchronous)

43

Blocking I/O Asynchronous I/O Non-Blocking I/O and Asynchronous I/O
are two different things!

while(not_done!)

Linux I/O Options

Standard POSIX I/O blocking read/write calls:
● https://man7.org/linux/man-pages/man2/read.2.html
● https://man7.org/linux/man-pages/man2/write.2.html

Make I/O calls non-blocking : set O_NONBLOCK flag on the file descriptor
● https://man7.org/linux/man-pages/man2/fcntl.2.html (O_NONBLOCK)

Asynchronous I/O on Linux : libaio and POSIX AIO
● https://github.com/littledan/linux-aio
● Example of how to use libaio: https://github.com/axboe/fio/blob/master/engines/libaio.c

44Asynchronous programming. Blocking I/O and non-blocking I/O, https://luminousmen.com/post/asynchronous-programming-blocking-and-non-blocking

https://man7.org/linux/man-pages/man2/read.2.html
https://man7.org/linux/man-pages/man2/write.2.html
https://man7.org/linux/man-pages/man2/fcntl.2.html
https://github.com/littledan/linux-aio
https://github.com/axboe/fio/blob/master/engines/libaio.c
https://luminousmen.com/post/asynchronous-programming-blocking-and-non-blocking

AIO Issues
SIGNAL based delivery of completion
● Preemption and context switch
● Needs care for signal-safe function execution

Linux’ AIO works truly “asynchronously” under very restricted conditions:

● works only with O_DIRECT modes (alignment, and size restrictions)
● works only when the file’s metadata is available

(otherwise blocks until the metadata is fetched)
● can block based on device’s queue capacity
● needs to memcpy of I/O metadata (~100 bytes)

Good introduction: https://unixism.net/loti/async_intro.html and https://kernel.dk/io_uring.pdf

45Signal Handling in a Multi-Threaded Application in Linux, https://www.baeldung.com/linux/signals-multi-threaded-app
Re: [PATCH 09/13] aio: add support for async openat(), https://lwn.net/Articles/671657/

https://unixism.net/loti/async_intro.html
https://kernel.dk/io_uring.pdf
https://www.baeldung.com/linux/signals-multi-threaded-app
https://lwn.net/Articles/671657/

Cost of these Interfaces

46
Modern Concurrency Platforms Require Modern System-Call Techniques, Florian Schmaus, Florian Fischer, Timo Hönig, Wolfgang
Schröder-Preikschat, 2021. https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/17655

https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/17655

Skip the OS Complexity: The SPDK Stack

47

SPDK I/O Stack
MM / BLK PCIe NVMe

● A user-space I/O framework for NVMe devices (only)
● Block-level abstraction (no file system, but there are research prototypes)
● Has user-space mapped drivers (https://spdk.io/doc/userspace.html)
● Designed for light-weight I/O, best performance (eschews many core OS features)

Memory
Mapped
PCIe I/O

Poll
driven I/O
Completion

https://spdk.io/doc/userspace.html

SPDK can have the Highest Performance

48

2 CPU sockets, Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz
22x Kioxia® KCM61VUL3T20 3.2TBs (FW: 0105) (10 on CPU NUMA Node 0, 12 on CPU NUMA Node 1)

SPDK NVMe BDEV Performance Report Release 23.05, June 2023,
https://ci.spdk.io/download/performance-reports/SPDK_nvme_bdev_perf_report_2305.pdf

~30 Million Ops/server6 Million Ops/core

https://ci.spdk.io/download/performance-reports/SPDK_nvme_bdev_perf_report_2305.pdf

Intricately Linked Issues

What is the system call interface

What is the kernel threading model

Signal vs queuing

What is the cost of scheduling, context
switching

Management of concurrency

Programming languages (error handling)

49Zebin Ren and Animesh Trivedi. 2023. Performance Characterization of Modern Storage Stacks: POSIX I/O, libaio, SPDK, and io_uring.
In Proceedings of the 3rd CHEOPS’23 workshop. https://doi.org/10.1145/3578353.3589545

https://doi.org/10.1145/3578353.3589545

Background Reading on this Topic

50

Storage APIs: Recap

51

Linux Kernel

NVMe Device

Applications

syscalls

Libaio:
+ Async I/O
+ Any files/FSes
+ Any device: HDD, NVMe

- Async only with direct I/O
- Performance
- Metadata management

NVMe Device

Applications

SPDK:
+ Performance
+ Close application integration
+ No syscall or interrupts

- Only NVMe
- No kernel assistance
- Scalability and brittle

SPDK

Linux Kernel

NVMe Device

Applications

SQ CQ

io_uring

Best of both worlds?

io_uring: A Structured Approach to Asynchronous I/O

52

Application

io_uring

syscall
io_uring_enter

interrupt

SQ CQ

Kernel

What’s new with io_uring, 2022, https://kernel.dk/axboe-kr2022.pdf

Producer-consumer pattern
● SQ: producer = application (tail), consumer = kernel (head)
● CQ: producer = kernel (tail), consumer = application (head)

Head and tail pointers manipulation with exclusive write
ownership

https://kernel.dk/axboe-kr2022.pdf

io_uring: A Structured Approach to Asynchronous I/O

53

Application

io_uring

syscall
io_uring_enter

interrupt

SQ CQ

Kernel

Request:
● File descriptor
● Offset
● Size
● (also vector)
● …

Applications can
● Async I/O
● I/O on any fd type (+net)
● Queue requests (batch)
● Vector I/O
● Optimize (fixed FD, pin)

Response:
● I/O status
● Context

(user-defined)
● Size of the I/O

Response:
● I/O status
● Context

(user-defined)
● Size of the I/O

Response:
● I/O status
● Context

(user-defined)
● Size of the I/O

Response:
● I/O status
● Context

(user-defined)
● Size of the I/O

1

2
2

3

4

5

6

7

The three new Syscalls
1. io_uring_setup: This call is for creating the ring structure (queue-depth, I/O

completion and notification modes)
a. Completion polling by the kernel on the device (IORING_SETUP_IOPOLL)
b. Kernel polling for submission (IORING_SETUP_SQPOLL, zero system call)

2. io_uring_enter: This call enters the kernel and tells it to process I/O requests (any

type and extensible, not just storage I/O)
a. Networking, ZNS, Programmable storage and more
b. Replacement for the ioctl() call: a private interface between a device driver and

application

3. io_uring_register: This call is for registering specific fd, buffers, file ranges that are
being used frequently to put them on an optimized fast path

See: /usr/include/linux/io_uring.h file for the full structure and call definitions 54

Three Modes of Operations

55

(a) io_uring (default) (b) with completion polling (c) with submission polling

Application

io_uring

s
y
s
c
a
l
l

i
o
_
u
r
i
n
g
_
e
n
t
e
r

interrupt

s
y
s
c
a
l
l

i
o
_
u
r
i
n
g
_
e
n
t
e
r

Application

io_uring
s
y
s
c
a
l
l

i
o
_
u
r
i
n
g
_
e
n
t
e
r

 polling

s
y
s
c
a
l
l

i
o
_
u
r
i
n
g
_
e
n
t
e
r

Application

io_uring

 polling

polling
with
kthread

SQ CQ SQ CQ SQ CQ
kernel

userspace

poll

56

Systor’22 CHEOPS’23

Diego Didona, Jonas Pfefferle, Nikolas Ioannou, Bernard Metzler, and Animesh Trivedi. 2022. Understanding modern storage APIs: a systematic study of
libaio, SPDK, and io_uring. In Proceedings of the 15th ACM International Conference on Systems and Storage (SYSTOR '22).
https://doi.org/10.1145/3534056.3534945

Zebin Ren and Animesh Trivedi. 2023. Performance Characterization of Modern Storage Stacks: POSIX I/O, libaio, SPDK, and io_uring. In Proceedings of the
3rd Workshop on Challenges and Opportunities of Efficient and Performant Storage Systems (CHEOPS '23). https://doi.org/10.1145/3578353.3589545

https://doi.org/10.1145/3534056.3534945
https://doi.org/10.1145/3578353.3589545

Benchmarking Setup
Setup 1 [Systor’22]:

● 2x Intel® Xeon® E5-2630 (Sandy Bridge), 10 cores/socket ⇒ 20 CPU cores

● 20 Intel® DC P3600 400GB NVMe Flash SSDs ⇒ ~6 Million IOPS

Setup 2 [CHEOPS’23]:

● 2x Intel® Xeon® Silver 4210R (Cascade Lake), 10 cores/socket ⇒ 20 CPU cores

● 7× Intel Corporation 900P NVMe Optane SSD ⇒ 4.2 Million IOPS

57

Number of System Calls

Doing I/O with zero system calls!

58

Results: Efficiency (single CPU core)

59

io_uring sits between libaio and SPDK Performance collapses with the kernel polling

Systor’22

Analysis

60

[Interesting] 8 milliseconds constant
latency for all queue depths!

Poor scheduling, and CPU sharing - Careful!

SPDK is still 5x more efficient

Systor’22 CHEOPS’23

Result: Efficiency with TWO CPU cores

61

[aio < iou < iou with polling < iou with kernel poll < SPDK]

Normal service order can be resumed (but at the cost of 2x CPU cores)!

Systor’22

Performance
recovered

Results: Scalability

62

CPU Cores used

io_uring kernel polling: Performance collapses when the
number of poller CPU threads increases beyond the cores

CPU efficiency is still bad: 10x more CPU cores needed

4 cores 13 cores

Systor’22 CHEOPS’23

io_uring : Programming Ecosystem
● liburing : https://github.com/axboe/liburing

○ 3x syscall based programming can be tricky, hence, a high(er)-level library

● Active research in leveraging io_uring in DBs, key-value store, etc.
● Applicability beyond storage as the “core” kernel-application interfacing

API

63

https://github.com/axboe/liburing

What you should know from this lecture
What is CXL and what key problems does it solve

What is different types of CXL protocols, device types, and generational features

What does flash + CXL allow us to do

What is asynchronous and non-block I/O, and what different APIs support them

What is io_uring? What are the different operation completion modes it support

What are the performance implications of these modes

The New(er) Triangle of Storage-Memory Continuum

64

To Conclude
Storage Research is fundamentally
changing and reshaping what
kind of systems we can build
tomorrow

● Performance
● Abstractions
● Efficiency
● Programmability
● Cost
● Scalability

This course came out of this report ;)
65

66

Tape

Hard disk drive (HDD)

DRAM Memory

CPU cache

CPU
register

Cost: $ / GB ~0.1ns

1-10ns

~10-100ns

~10-100ms

~100ms-10s

NAND Flash/Optane SSDs

Persistent Memory < 1 usec

~10-100 usec

The New(er) Triangle of Storage-Memory Continuum

Local CXL Mem
150-300 nsecs

Remote CXL Mem
~1-2 usecs

Local CXL SSDs
1 -10 usec

Remote CXL SSD
10-100 usec

Instead of discrete steps, it is a continuous spectrum now: Continuum

Further Reading - CXL (1 or 2)

67

● CXL Consortium, https://www.computeexpresslink.org/
● CXL resources, https://www.computeexpresslink.org/resource-library
● Linux CXL driver code: https://elixir.bootlin.com/linux/latest/source/drivers/cxl
● Debendra Das Sharma, and others, An Introduction to the Compute Express Link (CXL) Interconnect, 2023,

https://arxiv.org/abs/2306.11227
● Hasan Al Maruf, and others. TPP: Transparent Page Placement for CXL-Enabled Tiered-Memory. In Proceedings of the

28th ACM ASPLOS 2023. https://doi.org/10.1145/3582016.3582063
● Myoungsoo Jung. 2022. Hello bytes, bye blocks: PCIe storage meets compute express link for memory expansion

(CXL-SSD). In Proceedings of the 14th ACM HotStorage ’22, https://doi.org/10.1145/3538643.3539745
● Miryeong Kwon, Sangwon Lee, and Myoungsoo Jung. 2023. Cache in Hand: Expander-Driven CXL Prefetcher for Next

Generation CXL-SSD. In Proceedings of the 15th ACM HotStorage '23, https://doi.org/10.1145/3599691.3603406
● Huaicheng Li, and others. Pond: CXL-Based Memory Pooling Systems for Cloud Platforms. In Proceedings of the 28th ACM

ASPLOS 2023, https://doi.org/10.1145/3575693.3578835
● Shao-Peng Yang and others. Overcoming the Memory Wall with CXL-Enabled SSDs, USENIX ATC 2023,

https://www.usenix.org/conference/atc23/presentation/yang-shao-peng
● Donghyun Gouk and others, Direct Access, High-Performance Memory Disaggregation with DirectCXL, USENIX ATC 2022,

https://www.usenix.org/conference/atc22/presentation/gouk

https://www.computeexpresslink.org/
https://www.computeexpresslink.org/resource-library
https://elixir.bootlin.com/linux/latest/source/drivers/cxl
https://arxiv.org/abs/2306.11227
https://doi.org/10.1145/3582016.3582063
https://doi.org/10.1145/3538643.3539745
https://doi.org/10.1145/3599691.3603406
https://doi.org/10.1145/3575693.3578835
https://www.usenix.org/conference/atc23/presentation/yang-shao-peng
https://www.usenix.org/conference/atc22/presentation/gouk

Further Reading - CXL (2 of 2)
● CXL-ANNS: Software-Hardware Collaborative Memory Disaggregation and Computation for Billion-Scale Approximate

Nearest Neighbor Search, USENIX ATC 2023, https://www.usenix.org/conference/atc23/presentation/jang
● Marcos K. Aguilera, and others. 2023. Memory disaggregation: why now and what are the challenges. SIGOPS Oper. Syst.

Rev. 57, 1 (June 2023), 38–46. https://doi.org/10.1145/3606557.3606563
● Hasan Al Maruf and Mosharaf Chowdhury. 2023. Memory Disaggregation: Advances and Open Challenges. SIGOPS Oper.

Syst. Rev. 57, 1 (June 2023), 29–37. https://doi.org/10.1145/3606557.3606562
● Jianguo Wang and Qizhen Zhang. 2023. Disaggregated Database Systems. In Companion of the 2023 International

Conference on Management of Data (SIGMOD '23). https://doi.org/10.1145/3555041.3589403
● Wenjing Jin, and others. DRAM Translation Layer: Software-Transparent DRAM Power Savings for Disaggregated Memory.

In Proceedings of the 50th Annual International Symposium on Computer Architecture (ISCA '23).
https://doi.org/10.1145/3579371.3589051

● What’s the Difference Between CXL 1.1 and CXL 2.0?
https://www.electronicdesign.com/technologies/embedded/article/21249351/cxl-consortium-whats-the-difference-betwe
en-cxl-11-and-cxl-20

● QEMU CXL setup, https://www.qemu.org/docs/master/system/devices/cxl.html
● How To Map a CXL Endpoint to a CPU Socket in Linux,

https://stevescargall.com/blog/2022/12/27/how-to-map-a-cxl-endpoint-to-a-cpu-socket-in-linux/

68

https://www.usenix.org/conference/atc23/presentation/jang
https://doi.org/10.1145/3606557.3606563
https://doi.org/10.1145/3606557.3606562
https://doi.org/10.1145/3555041.3589403
https://doi.org/10.1145/3579371.3589051
https://www.electronicdesign.com/technologies/embedded/article/21249351/cxl-consortium-whats-the-difference-between-cxl-11-and-cxl-20
https://www.electronicdesign.com/technologies/embedded/article/21249351/cxl-consortium-whats-the-difference-between-cxl-11-and-cxl-20
https://www.qemu.org/docs/master/system/devices/cxl.html
https://stevescargall.com/blog/2022/12/27/how-to-map-a-cxl-endpoint-to-a-cpu-socket-in-linux/

Further Reading - io_uring (1 of 2)

69

● Efficient IO with io_uring, https://kernel.dk/io_uring.pdf
● What’s new with io_uring, https://kernel.dk/axboe-kr2022.pdf
● An Introduction to the io_uring Asynchronous I/O Framework,

https://blogs.oracle.com/linux/post/an-introduction-to-the-io-uring-asynchronous-io-framework
● Zebin Ren and Animesh Trivedi. 2023. Performance Characterization of Modern Storage Stacks: POSIX I/O, libaio, SPDK,

and io_uring. In Proceedings of the 3rd Workshop on Challenges and Opportunities of Efficient and Performant Storage
Systems (CHEOPS '23). Association for Computing Machinery, New York, NY, USA, 35–45.
https://doi.org/10.1145/3578353.3589545

● Diego Didona, Jonas Pfefferle, Nikolas Ioannou, Bernard Metzler, and Animesh Trivedi. 2022. Understanding modern
storage APIs: a systematic study of libaio, SPDK, and io_uring. In Proceedings of the 15th ACM International Conference
on Systems and Storage (SYSTOR '22). Association for Computing Machinery, New York, NY, USA, 120–127.
https://doi.org/10.1145/3534056.3534945

● Simon A. F. Lund, Philippe Bonnet, Klaus B. A. Jensen, and Javier Gonzalez. 2022. I/O interface independence with xNVMe.
In Proceedings of the 15th ACM International Conference on Systems and Storage (SYSTOR '22). Association for
Computing Machinery, New York, NY, USA, 108–119. https://doi.org/10.1145/3534056.3534936

● Sidharth Sundar, William Simpson, Jacob Higdon, Caeden Whitaker, Bryan Harris, and Nihat Altiparmak. 2023. Energy
Implications of IO Interface Design Choices. In Proceedings of the 15th ACM Workshop on Hot Topics in Storage and File
Systems (HotStorage '23). Association for Computing Machinery, New York, NY, USA, 58–64.
https://doi.org/10.1145/3599691.3603411

https://kernel.dk/io_uring.pdf
https://kernel.dk/axboe-kr2022.pdf
https://blogs.oracle.com/linux/post/an-introduction-to-the-io-uring-asynchronous-io-framework
https://doi.org/10.1145/3578353.3589545
https://doi.org/10.1145/3534056.3534945
https://doi.org/10.1145/3534056.3534936
https://doi.org/10.1145/3599691.3603411

Further Reading - io_uring (2 of 2)

70

● Ringing in a new asynchronous I/O API, https://lwn.net/Articles/776703/
● [PATCHSET v5] io_uring IO interface, https://lore.kernel.org/linux-block/20190116175003.17880-1-axboe@kernel.dk/
● Gabriel Haas and Viktor Leis. 2023. What Modern NVMe Storage Can Do, and How to Exploit it: High-Performance I/O for

High-Performance Storage Engines. Proc. VLDB Endow. 16, 9 (May 2023), 2090–2102.
https://doi.org/10.14778/3598581.3598584

● Hugh C. Lauer and Roger M. Needham. 1979. On the duality of operating system structures. SIGOPS Oper. Syst. Rev. 13, 2
(April 1979), 3–19. https://doi.org/10.1145/850657.850658

● John Ousterhout, Why Threads Are A Bad Idea (for most purposes),
https://web.stanford.edu/~ouster/cgi-bin/papers/threads.pdf

● Rob von Behren, Jeremy Condit, and Eric Brewer. 2003. Why events are a bad idea (for high-concurrency servers). In
Proceedings of the 9th conference on Hot Topics in Operating Systems - Volume 9 (HOTOS'03). USENIX Association, USA,
4. https://dl.acm.org/doi/10.5555/1251054.1251058

● Philipp Haller, Martin Odersky, Scala Actors: Unifying thread-based and event-based programming, 2008,
https://doi.org/10.1016/j.tcs.2008.09.019.

● A 5 part series on the asynchronous nature of I/O, OS, and concurrency:
https://blog.acolyer.org/2014/12/08/on-the-duality-of-operating-system-structures/

● µTune: Auto-Tuned Threading for OLDI Microservices, https://www.usenix.org/conference/osdi18/presentation/sriraman
● Linux Asynchronous I/O, https://oxnz.github.io/2016/10/13/linux-aio/
● Linux-aio, https://github.com/littledan/linux-aio

https://lwn.net/Articles/776703/
https://lore.kernel.org/linux-block/20190116175003.17880-1-axboe@kernel.dk/
https://doi.org/10.14778/3598581.3598584
https://doi.org/10.1145/850657.850658
https://web.stanford.edu/~ouster/cgi-bin/papers/threads.pdf
https://dl.acm.org/doi/10.5555/1251054.1251058
https://doi.org/10.1016/j.tcs.2008.09.019
https://blog.acolyer.org/2014/12/08/on-the-duality-of-operating-system-structures/
https://www.usenix.org/conference/osdi18/presentation/sriraman
https://oxnz.github.io/2016/10/13/linux-aio/
https://github.com/littledan/linux-aio

