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Abstract—High-quality designs of distributed systems and
services are essential for our digital economy and society. Threat-
ening to slow down the stream of working designs, we identify the
mounting pressure of scale and complexity of (eco-)systems, of ill-
defined and wicked problems, and of unclear processes, methods,
and tools. We envision design itself as a core research topic in
distributed systems, to understand and improve the science and
practice of distributed (eco-)system design. Toward this vision, we
propose the ATLARGE design framework, accompanied by a set
of 8 core design principles. We also propose 10 key challenges,
which we hope the community can address in the following 5
years. In our experience so far, the proposed framework and
principles are practical, and lead to pragmatic and innovative
designs for large-scale distributed systems.

Index Terms—Design; distributed systems; distributed ecosys-
tems; massivizing computer systems; system design; vision.

I. INTRODUCTION

Our knowledge-based society expects a continuous stream

of designs—of computer-based services and of the distributed

systems on which they run. We use daily many distributed

ecosystems [1] whose designs appeared only recently, e.g.,

of GAFAM and BAT [2], and expect new designs that will

lead to considerable economic growth and productivity [3]–

[5]. As Figure 1 indicates, design is a common keyword in

top scientific and industry venues, including ICDCS. Yet, as

we show in this work, we should not take design for granted,

and we should not consider that the current approaches will

continue to deliver good results. Design problems keep getting

more difficult to formulate, and their solutions more difficult

to find and reason about. Existing design processes, from

merely relying on intuition to classic [6]–[8] to emerging [9],

[10], have significant shortcomings for designing distributed

ecosystems [1], [11]. Instead, to address this grand challenge

of the distributed systems community, we propose a vision

toward establishing new theoretical and practical means to

produce pragmatic and innovative designs.

Definition: “Design is the intentional solution of a

problem, by the creation of plans for a new sort of

thing, where the plans would not be immediately seen,

by a reasonable person, as an inadequate solution.” [12,

Loc.345]. Pragmatic design is further implemented

and runs in production-like settings. Innovative design
“consists in novel solutions” [13, Loc.2353].
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Source: own analysis of all publications 
during the period from the start of 2013 to 
the start of 2018, in the following venues: 
CCPE, FGCS, ToIT, TPDS, IEEE IC, TWeb, 
ATC, CCGRID, Euro-Par, Eurosys, FAST, 
HPDC, ICDCS, IPDPS, ISC, LISA, Middleware, 
NSDI, OSDI, P2P, PODC, SoCC, SC, and SOSP.

Fig. 1. Presence of selected keywords in top systems venues.

We are interested in a particular kind of design, for massiviz-
ing computer systems (MCS) [1], that is, for production-ready

distributed systems and ecosystems. As in our previous work,

we see distributed ecosystems as composites of interconnected

(distributed) systems and, recursively, ecosystems. Ecosystems

fulfill functional requirements (FRs), such as responding to

service-queries, or batch-processing big data and computation,

and non-functional requirements (NFRs), such as predictable

high performance and availability. They do so subject to Ser-

vice Level Agreements (SLAs), and in doing so they experience

dynamics, such as provisioning and releasing resources from

an external cloud, and give rise to various phenomena that

are difficult to foresee at design time, such as performance

variability.

Vision: We envision a world of distributed ecosys-

tems, based on pragmatic and innovative MCS de-

signs, created by diverse designers using design phi-

losophy, processes, patterns, and tools, together with

scientists, engineers, and the society itself.

We see design as a major challenge for the field of MCS,

and raise about it two key questions. How to find good designs
and even good problems? The ever-increasing complexity of

the field—contrast the relatively simple design of the earlier

distributed system BitTorrent with the current ecosystems at

Google, which can require the orchestration of hundreds of ser-

vices and systems to produce meaningful results [14], [15]—

makes it unlikely that good designs can be achieved from mere
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sparks of intuition of lonely designers, without good process

and collaboration. Not only solving, but also finding problems

is increasingly more difficult, and, for ecosystems, finding who

should solve them; in contrast, in the 1960s, the core systems

problems were well-known, and a small architectural team

could direct work on the entire IBM system 360 family [8].
How to design the processes and create the bodies of

knowledge that increase the likelihood of good MCS de-
sign? It is challenging to select the design elements elements

that could lead to a high likelihood of good MCS designs,

from the hundreds of design patterns [10], [16], [17] and

practical steps [18]–[20], and from the many development

processes such as rational and agile [9]. Students and even

practitioners have rarely studied these systematically, which

compounds the problem. But even if the designer would

have the experience and knowledge to select, these design

elements make many unreasonable assumptions about how

designers actually work [11, Ch.3], disregard modern design

theory [21] [12, Ch.1-2], and focus not on MCS but on

engineering software services [10], software [16], [22], and

hardware [8], [23]. In particular, they are not focusing on

the daunting systems challenges of new phenomena, emergent

behavior, and evolution of technology.
Our vision aims to place design as a core research topic

in distributed systems and ecosystems. We do not merely

aim to provide a set of design patterns, which is a staple of

software [24] and of service [10] design but not necessarily

the key to design success in distributed systems or even in

architecture [25, Loc.572]1. We also want to steer away from

heavyweight design processes, which stifle good design [11,

p.233] [25]. We aim to provide a framework for design,

from understanding how to think about design in this field

to finding and solving MCS design-problems, from design

of distributed ecosystems to design supporting experiments of

and publications about them, with a five-fold contribution:

1) We are the first to explicitly posit that design is a key

area of research in distributed systems, and especially

in MCS (in Section II). As support, we offer qualitative

and quantitative evidence.

2) We propose the ATLARGE framework for design (Sec-

tion III). The framework starts from the central premise

that design has a fundamentally different nature from

science and engineering, which has not been formulated

for the distributed systems field. The framework includes

novel elements focusing on MCS, about design think-

ing, problem-finding, problem-solving, and reporting of

designs.

3) We propose 8 core principles of MCS design (Sec-

tion IV). The core principles address four main cate-

gories, around the central premise, and systems, people-

ware [27], and methodological aspects.

4) We identify 10 current challenges raised by MCS

design (in Section V). The challenges are grouped

1The approach based on design patterns in architecture [26], which has
inspired generations of software engineers [24], was quickly dismissed by the
architecture community, including by its author, as too limiting.

into the same four main categories as the core

principles—central premise, systems, peopleware [27],

and methodological—and give a broad scope of what

the field could address in the next 5 years. Although,

in doing so, the community and our own work will

supersede the framework elements presented here, we

envision the general structure of the framework will be

long-lasting.

5) We show evidence, trough real-world experiments, of

how the ATLARGE design framework can be pragmatic

yet lead to innovative designs (in Section VI), and

compare the framework with a multi-disciplinary body

of related work (Section VII).

II. WHY FOCUS ON MCS DESIGN?

We argue in this section for the timely and important

need to focus on MCS design. Not only is (good) design

needed (Section II-A), but we identify an increasing need

for good design (Section II-B) and designers (Section II-C).

We also analyze what good design needs to address, that is,

complex challenges from system design (Section II-D) and

from MCS design (Section II-E).

A. Without (Good) Design, We Have Design Debt
Similarly to how Brooks dismissed the idea that organiza-

tions can cope with increasing technical debt just by adding

more person-months, in this work we want to dismiss the idea

that organizations can cope with increasing system complexity

(to parallel Brooks, design debt) just by hoping good design

will simply emerge.

The consequences of not having good designs are well-

known, but difficult to quantify. Lackluster design costs

money, causes systems to under-perform and sometimes to

fail, and delays the arrival of needed systems in the market.

Organizations prioritizing working systems over good design

effectively defer the moment when they will have to actually

solve the problem. In many cases, careful monitoring and

capable engineering teams (e.g., sysadmins or site reliability

engineers) can help resolve the problems, and in particular

avoid unscheduled downtime2, poor performance, and the

resulting bad reputation. However, monitoring only reveals

what is measurable and measured [28], leaving organizations

exposed to wicked problems (defined in Section II-D) and

complex ecosystems (Section II-E).

If lackluster design is costly, bad design can be catastrophic.

Design by committee [29] is known to cause entire projects to

fail [11, Ch.4], yet many organizations still rely on design by

committee done by a central team for technology architecture.

A particularly bad case of design by committee is when the

entire community ignores the needs of the market and society;

fiery arguments in this sense appeared in the databases and grid

computing communities, around the start of the 2010s.

2Despite recently publishing books on best-practices for distributed systems
design [10] and on site reliability engineering [14], [15], since the books were
published both the Microsoft and the Google clouds have suffered unscheduled
downtime and its related bad publicity.
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Fig. 2. Count of design articles in selected high-quality computer systems
venues, since 1980, in 5-year blocks.

Fig. 3. Violin plots of the scores received by articles in a top quality
conference in distributed systems, held in the past 5 years. Articles are grouped
in various categories for the purpose of this analysis. Each article is scored for
a number of aspects: (left) overall merit assessed for each article, (middle)
quality of contribution, (right) match with conference topic. All scores are
integers between 1 (lowest) and 4 (highest). (Stars depict averages. White dots
depict medians. The thick bar denotes the IQR range. Whiskers show 1.5 ˆ
the range, clipped to actual min and max.)

B. The Increasing Need for Good Design

Design articles are increasingly present in major dis-
tributed systems venues (Figure 2). Complementing the

findings related to Figure 1, we ask Is the presence of design
articles in top distributed systems venues increasing?

We have extracted all design articles appearing in such

venues over a period of nearly four decades (from 1980 to

2018), and counted them per venue and per 5-year block.

Figure 2 depicts the count of design articles in selected systems

venues, over contiguous 5-year periods starting with 1980.

Some of the venues have started earlier, so for them only

censured data is available. The last period depicted in the

figure, starting in 2015, is incomplete. Many of the venues, in-

cluding ICDCS, have experienced an increasing accumulation

of design articles, with a marked increase in design articles

accepted for publication since 2000.

C. The Increasing Need for Good Designers

We also anticipate an increasing need for good designers.

We identify two main possible sources for good designers:

professionals in the field and students about to become such

professionals. We analyze here their capabilities, and conclude

there is much room for improvement.

Fig. 4. Typical student design, produced early in a graduate distributed
systems course at a top university in computer science. The text is difficult
to read, as designed by the student.

Some professionals produce good designs, but still many
do not (Figure 3). We analyze for a top conference in large-

scale distributed systems all the review-results in one year3.

For this conference, for each article we have collected whether

it is a design article, the final status as accepted for publication

in the conference or rejected, and, across the (3+) reviewers,

the final scores for (i) the overall quality of the work (the

merit), (ii) the quality of the approach (quality), and (iii) the

fit with the topic of the conference (topic). Figure 3 depicts the

final scores, using distributional (violin) plots. For merit, we

find that (1) design articles have a slightly better distributional

shape over non-design articles, with higher (better) median,

mean, and IQR, and more of the distribution around an overall

score of 2 or higher. Across merit and quality, we also find

that: (2) a significant percentage of the design articles are

not of high quality or high merit (scores significantly below

3). Finding (2) is surprising, because top-tier venues imply

self-selection against submitting what the authors themselves

consider insufficiently good work; few should merely try out

submitting an article to, e.g., ICDCS. This indicates that many

professionals still have trouble in both producing and self-

assessing their designs.

Graduate students also need training in design thinking
and design skills (Figure 4). We analyze here the results

obtained from a class of nearly 100 students enrolled in a

graduate-level Distributed Systems course4; the course seems

popular, as the typical class size is around 15 students. We

teach in this course not only typical systems concepts from

the field, but also concepts and a process for (MCS) design

based on the ATLARGE design framework (see Section III).

Throughout seven design sessions, students in groups of up

to six are tasked to create several designs addressing given

problems. Figure 4 depicts an early design, attempting to

3We anonymize the venue, but consider it relevant because its held year is
after 2014, the venue is a conference, and its ranking is A in CORE18 and
green in MSAR14. For comparison, ICDCS has these rankings too.

4We anonymize the university, but consider the course relevant because it
is large, it took place after 2014, and the university is ranked in the top-150
(in computer science) in both the THE and the QS 2018 World University
Rankings (out of nearly 1,000 universities), and in Webometrics of July 18
(out of over 28,000).
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satisfice [30, p.27] the problem of scalable ecosystems for

massivizing an online game [31]. The figure represents, to a

degree, the common submitted design (across all groups) in the

same session—what students know after a Bachelors and some

graduate courses, but before learning specifically about design.

The figure raises many questions about the quality and even the

meaning of the proposed design. Even though it is a simplified

and high-level design, it still lacks a believable description

for solving (even part of) the problem. For instance, an

important missing detail are the interconnections, in the geo-

distributed datacenter and between stakeholders. This design

also lacks any layering, system packaging, or description of

the (sub)components. The visual depiction designed by the

students is also lacking.

D. New Thoughts on Traditional System Design

System design has gone through successive waves of (shift-

ing) traditional challenges. The 1950s and 1960s system

designers were operating in a world where the core problems

seemed structured, and the core design approach could be

entirely rational, aiming to optimize the result [11, Part I].

Well-structured problems have several important characteris-

tics [32]: (1) a criterion to automatically evaluate the result,

(2) an unambiguous representation for the goal, and start

and intermediate states of the problem, and legal transitions

between them, (3) a clear representation of all domain knowl-

edge, (4) if interfacing with the natural world, the interaction

system-nature can be captured accurately, (5) the problem

itself is tractable. By the 1970s, it has become apparent

that core problems could further be ill-structured [32], that

is, not have one or several of the characteristics of well-

structured problems, or, worse, wicked problems [33], that

is, without clear and final formulation, with no universally

accepted criteria for success and clearly defined states due to

involvement of various stakeholders with competing interests

and views, and of various types of hardware and software

with various degree of autonomy and limited ability to sense

their surroundings. (Now, at the end of the 2010s, the systems

community seems to have partially lost this knowledge.5)

To address ill-defined and wicked problems, the design com-

munity has shifted to satisficing instead of optimizing designs,

and to a process of co-evolving problem-designs [11, Loc.935].

A cycle of continuous reaction and adaptation triggers the co-

evolution: clients change workloads and SLAs, or laws and

standards change; in response, system designers evolve, adapt,

and decommission parts of the ecosystem; this triggers another

round in the cycle. Co-evolving problem-desings are typical in

systems design [1], [11] and pose very significant challenges,

in particular because the end-goal is unknowable. For example,

Google’s datacenter networking evolved significantly over a

decade [34], as did Google’s Spanner for over 5 years [35].

5It is symptomatic for the state of systems design that reviewers in top
systems venues do not recognize terms such as “ill-defined” and “wicked”, and
instead find them too colloquial even after careful explanation and referencing.
(We are grateful to ICDCS reviewers for being positively different.)

E. New Challenges in MCS Design

We identify three major trends and related challenges in

distributed systems and ecosystems:

(C1) New ecosystem life-cycles: Whereas many past sys-

tems were developed and hosted in-house, since 2007 or-

ganizations have increasingly shifted operations to (public)

cloud computing [3], [5], and thus to distributed ecosystems.

Consequently, systems and workloads have become much

more fragmented than in the past, requiring new approaches

for (automatic) decomposition and orchestration. We identify

a strong drive to flexibility and composability at scale; to

quote Darwin, “endless forms most beautiful”. This raises

many new challenges, e.g., the fundamental challenges of

MCS [1, S2.2] are about the lack of: (1) operational laws

and theories for ecosystems, (2) comprehensive means to

maintain existing ecosystems, (3) means to explore credible

future ecosystem designs, (4) qualified personnel, (5) adequate

inter-disciplinary tools to assess and control the (unwanted)

impact of ecosystems on society.

(C2) New ecosystem needs and phenomena: New design

aspects appear when designing entire ecosystems or systems

operating in ecosystems. In MCS systems have many new

NFRs, including various forms of elasticity [36], privacy,

interoperability, and operational risk associated with them.

Ecosystems are super-distributed [1]: they are recursively

distributed, with their constituents often being distributed

(eco)systems; yet, FRs and NFRs in distributed systems are not

known to be directly composable across ecosystems. Various

dynamic phenomena appear in distributed ecosystems, seem-

ingly unique situations that do not fit the patterns expected

from current theory and practice; for example, vicissitude [37]

is a class of phenomena where several known bottlenecks

appear seemingly at random in various parts of the system,

performance variability is common in clouds [38], datacenter

networks [39], and big data operations [40], and ecosystem

owners spar with each other (e.g., in Jan 2019, Apple denied

Facebook and Google access to its APIs, Unity changed their

Terms-of-Service and thus locked out small developers like

SpatialOS). Some of these phenomena are due to emergent
ecosystem behavior and uncontrolled evolution of technology.

(C3) New ecosystems, old parts: The evolution of dis-

tributed systems technology has generated many useful parts

that are commonly used in today’s ecosystems, from simple

mechanisms (e.g., caching, scheduling), to protocols (e.g., for

multi-site data transfer) and policies (e.g., for autoscaling), to

relatively simple systems (e.g., BitTorrent for file-sharing), to

commonly used architectures (e.g., for web applications, for

big data processing). A large amount of legacy applications,

using various generations of technology, still operate. Yet, this

legacy technology and applications were not designed for the

new ecosystems, for example, they are not cloud-native, or

they do not match current development and operational pro-

cesses. Fully replacing them could be prohibitively expensive

in the short-term, which means MCS designers must innovate

to keep them operational, efficiently.
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Fig. 5. Dorst considers design an unique intellectual activity, based on
abduction [21, p.13]. In particular, design is not science or engineering.

III. THE ATLARGE DESIGN FRAMEWORK FOR MCS

In this section, we summarize the current theories about

design as an activity, then focus on the ATLARGE design

framework. We give its central premise, explain the focus and

main concerns, and focus on its key methods for design-space

exploration, problem-finding, problem-solving, and reporting

to the community and society. Overall, the key contribution

of this framework is that it combines current theories about

design thinking (Section III-A) with MCS-focused design

processes (Sections III-B–III-F).

A. Designerly Ways of Thinking

Design, from engineering component to independence6:
Ever since the introduction of the concept of “designerly ways

of thinking”, in the 1990s [25, p.68, concept by Cross], and

possibly also earlier, the modern design community has held

as a theoretical principle that design is based on specific,

idiosyncratic ways of thinking. In 2017, Dorst described a

theoretical model for reasoning [21, p.13] that includes design

thinking, in which the reasoning universe consists of specific

concepts (e.g., real people, software objects), which represent

the “What?” of the problem to solve; of relationships between

the concepts (e.g., laws of nature, principles of hardware

operation, software patterns), which represent the “How?”;

and of an outcome that combines the concepts and the re-

lationships (e.g., into a real-world system, into an observable

phenomenon).

Figure 5 depicts the Dorst reasoning model. In this model,

deduction proceeds from given concepts and relationships,

and reasons toward an outcome that can be observed (and,

thus, testing the deduction); for example, given a Turing

machine and a deterministic algorithm designed for it (and

its input), we can deduce its outcome. Induction follows

another classical model from science. Abduction for problem

solving (normal abduction in Dorst’s model) matches well the

software engineering experience—given the architecture of a

software system, determine the best software-design patterns,

6Computer and software engineering have traversed a similar process until
emancipation in the mid-1960s [41, Part III], when detaching from mathe-
matics. Interestingly, mathematics had to follow a similar process, to detach
from philosophy; an important part of this process Hilbert’s program [42].

Who? Stakeholders designers, scientists, engineers,

students, society

What? Central Paradigm design, different

from science and engineering

Focus ecosystems, systems within

structure, organization, dynamics

Concerns functional and non-functional

properties; phenomena, evolution

How? Design Thinking abductive thinking, processes,

co-evolving problem-solution

Exploration design space, process to explore

Problem-finding structured, ill-defined, wicked

Problem-solving pragmatic, innovative, ethical

Reporting articles, software, data

TABLE I
AN OVERVIEW OF THE ATLARGE DESIGN FRAMEWORK.

and the other software engineering concepts and objects, to

realize the system that would act as predicted at design-time.

Unreasoning, which we add to the Dorst model, simply states

an extreme of reasoning where any concept, relationship, and

outcome can be put together, for example, by an organization

for which facts do not matter (one of “alternative facts”).

Design abduction: In contrast to the other reasoning ap-

proaches in Figure 5, design abduction begins with a desirable

outcome, and the problem becomes one of finding the concepts

and their relationships that lead to the outcome. Of course,

an intractable or even infinite number of possible concepts

and relationships can exist to consider, which is what makes

the design problem rarely amenable to normal abduction (and

normal engineering). This does not mean that design abduction

must be purely creative, without process.

B. Overview

We give an overview of the ATLARGE design framework

and summarize its key properties in Table I: Who? What?

How? are the questions addressed in this section.

Who? Stakeholders: The primary stakeholder of MCS

design is the society; this is because designs in this field

can have an unusually large impact, for a direct product

of computing. The ATLARGE design framework considers

explicitly that designers fulfill a separate role from scientists

and engineers, and, consequently, that students require explicit

training in design.

What? The Central Premise: design is unique among
intellectual activities. Like Cross [43], Dorst [21], and Par-

sons [12], the ATLARGE framework considers design an

unique intellectual activity, essentially different from science

and engineering. This does not mean that scientists and engi-

neers cannot design—theory and practice indicate all people

can and do design naturally [12, Loc.275, theory by Victor

Papanek]—, but doing so proficiently and efficiently still

requires professional expertise, much like engineering and
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Fig. 6. Basic design processes address how to explore the design space. They
range from free to fixed to co-evolving exploration.

science. Design thinking also addresses emergent system be-

havior through flexible thought, guided typically by intuition.

What? The Main Focus and Concerns: support for
MCS design. This requires focusing on both the traditional

challenges raised by system designs (see Section II-D) and

the new challenges raised by MCS (see Section II-E). Two

traditional problems of design are to identify the design space

and to explore it efficiently; how to do so for MCS designs

is an open challenge. Among the MCS-specific aspects, the

ATLARGE design framework considers explicitly, for every

problem: the architecture of ecosystems and of systems oper-

ating in ecosystems; the structure, organization, and dynamics

of ecosystems; functional and non-functional properties and

their expression as implicit (that is, designer-given) or explicit

(that is, client-given) SLAs; and known aspects of ecosystem

phenomena, emergence, evolution.

How? Designerly Thinking: Derived from its central

premise, the ATLARGE design framework considers designerly

thinking as an essential ability of its practitioners. Among its

core elements, this ability includes understanding, conducting,

and managing design as co-evolving problem-solutions. In

particular, the co-evolving problem-solutions promise to ad-

dress the emergent nature of systems, by iteratively addressing

(emerging) problems. Additional reasoning and practical skills

related to science and engineering are also welcome.

How? Key Processes: Although in practice design is still

largely an unstructured process, and attempts to impose a rigid

structure cause negative reactions [11] and even opposition in

software engineering practice7, the ATLARGE design frame-

work holds that there still is room for (flexible) process for

design. Key to good design, the framework proposes not rigid

steps, but a small number of flexible methods and processes

for: design space exploration (in Section III-C), problem-

finding (in Section III-D), a basic cycle for problem-solving

(in Section III-E), and for making the results available beyond

the design team (in Section III-F).

7The agile manifesto, https://agilemanifesto.org/

Fig. 7. Design exploration for MCS, through an example. Dark circles are
problems. Light (green) circles are successful designs. Boxes marked with an
“X” are design attempts that result in failure.

C. From Free to Co-Evolving Design Exploration

A general, flexible approach to design space exploration
for MCS: Figure 6 depicts several processes for design

exploration. Following the Dorst design framework, the design

abduction could be conducted freely, as pure exploration: the

designer considers concepts and relationships at will, guided

by own intuition and shared community expertise. Although

this approach can result in radically new designs, its likelihood

of success is limited by the scale of the design space. In con-

trast, the ATLARGE design process considers three other, more

structured approaches for design space exploration. All three

consider that there is a process for finding good problems, for

example, the process described in Section III-D. The Fix the
What and Fix the How processes explore the same trade-off:

they aim to improve the likelihood of obtaining satisficing

designs by diminishing the likelihood that the design will

be radically innovative. They both do this by limiting the

options available to explore. The former does this by fixing the

concepts at play and in particular the technology the designer

can use; the latter, by fixing the kinds of relationships available

to the user (“(re-)framing” in traditional design [21, p.14]).

The third process, co-evolving, focuses on iterating designs

by changing the problem itself, and further allows using any

of the other exploration processes for solving the problem

in the current iteration. The staple of this process is the

co-evolving problem-solution, with which it can explore a

potentially unlimited design space while having a satisficing

solution available at each iteration (after the first iteration).

How does co-evolving design space exploration work, in
practice? Figure 7 depicts an abstract but realistic example

of co-evolving design. The Design Team (DT) is trying to

create a pragmatic, innovative design. DT starts with a problem

(Problem 1 in Figure 7 (a)). DT creates a design for it, which

satisfices or even optimizes the problem (Solution 1). It is

not too sophisticated, so DT agrees they could do better. DT

tries to do better, and fail (Failure 1). DT learns from it, and

produce a new design (Solution 2). Iterating through their

design cycle, DT keeps traversing the design space, exploring

several dimensions concurrently, and find after much struggle

(and failure) a couple more solutions. However, at this point

DT concludes it is too difficult and/or costly to keep exploring.
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DT has learned enough in the process of design, and possibly

with help from their community and clients, and area ready to

evolve the problem (Problem 2 in Figure 7 (b)); for example,

DT could focus the design on a new ecosystem, replacing the

old ecosystem that proved to be too limited for DT to solve

the problem. (This does not mean the old ecosystem is not

good for other design teams or for other design problems.)

It turns out that, for this new problem, DT can find many

new solutions relatively easily. The process is successful, and

promises more success for the future.

D. Problem-Finding Process for MCS Design

Approach: It would be presumptuous to claim there exists a

process for finding all the problems MCS designers can solve.

Instead, inspired by how conferences in the field use Calls for

Papers to steer the authors, the ATLARGE design framework

aims to focus the designer by proposing a set of problem
archetypes (topics). The community could help expand and

refine this set in the future. This approach seems highly

successful in focusing designers—Figure 3 (right) indicates

the designs submitted for evaluation match closely the topics

proposed by the conference’s community, as proposed by the

Program Chairs. Although none of the concepts used in the

framework is new, synthesizing these aspects into a catalog, as

we do in this work, is novel for the field and seems valuable

(see Section VI).

What kinds of problems? Derived from Section II-E,

the ATLARGE design framework proposes to focus on: (P1)

problems in ecosystem life-cycle, including for new and

emerging processes and services, and for new and emerging

ecosystems; (P2) problems related to new and emerging needs

of ecosystem-clients and -operators, addressing newly discov-

ered, emerging, and recurring phenomena, and harnessing new

technology (a special kind of phenomenon); (P3) problems

related to leveraging and maintaining legacy components.

Besides problems that lead to creating new technology, (P4)

inspired by natural sciences, where understanding the mor-

phology of natural ecosystems is valued, problems related

to understanding how new and emerging technology actually

works in practice or when placed in ecosystems, and what

new phenomena appear related to ecosystem-operation; (P5)

inspired by mathematics, where creating new abstractions can

be important regardless of application, problems related to

previously unexplored parts of the design space.

How to identify meaningful problems? Also here, the AT-

LARGE design process tries to select from known approaches

to identify problems. For addressing problems of types (P1)–

(P3), the designer could try to collect and adapt problems from

various sources: (S1) (peer-reviewed) qualitative and quantita-

tive studies conducted on ecosystems and on systems within

them; (S2) discussion with experts, own analysis of best-

practices including reading of technical reports, tech blogs,

and best-practice books; (S3) own thought and lab experiments

concerning the key technology trends, known technical and

other limitations, etc.

For P4, the designer could follow a process matching

(empirical) science, but focusing on systems, leveraging the

scientific process as finder of phenomena to be harnessed.

This could include understanding how systems work through

collection and analysis of data archives, where the data repre-

sents workloads (e.g., structure of jobs, job life-cycle events

such as arrivals, migrations, and cancellations) and opera-

tions (e.g., utilization of specific components, (un)availability

events). Here, an important set of problems relate to collect-

ing meaningful data: the construction of the observation or

measurement instrument, the design of a meaningful data-

collection protocol, etc. Currently, these problems seem largely

ignored in our field, leading to a dearth of meaningful data for

experiments and, possibly, for discovering real problems.

For P5, derived from the notions of views in software en-

gineering [44] and of morphological analysis in sciences [45],

the designer could identify unoccupied niches and formulate

the problem of exploring them, driven by curiosity.

E. Problem-Solving Process for MCS Design

Approach: Similar to problem-finding, problem-solving is

too diverse to capture in any single process; moreover, stage-

based processes can raise resistance from practitioners as too

constraining [25]. The ATLARGE design framework aims to

balance the pragmatic need to have a process with clear

stages, which allows teams to synchronize about and during

the process of design, and the need for innovation that is

based on the flexibility to not stifle creativity. To this end, the

framework includes an iterative process focusing on creative

tasks, which in particular allows its practitioners to skip

any step at each iteration. Unlike typical processes in the

field, which focus either on hardware design [8], [23] or on

software design [16], [22], or on higher-level processes on

keeping the team agile [9], the ATLARGE problem-solving

process focuses first on system-level concerns. Pragmatically,

this means it considers first the concepts, components, and

challenges specific to MCS.

To manage the complexity of the problem of designing

distributed systems and ecosystems, the ATLARGE problem-

solving process includes two core elements: (1) a Basic Design
Cycle (BDC), which is a general process for solving problems,

and (2) an Overall Process that combines several BDCs into a

structure for decomposing and solving MCS design-problems.

We only sketch our problem-solving process here, and leave

the full detail for future work.

The BDC is the core loop: The BDC process aims

to solve any generic design problem through a structured

process consisting of the following elements: (1) Formulate

requirements, (2) Understand alternatives, (3) Bootstrap the

creative process, (4) High-level and low-level design, (5)

Implementation of mathematical analysis code, of simulators,

of prototypes, etc. (6) Conceptual analysis of the design, (7)

Experimental analysis of the design, (8) Result summarizing

and dissemination. This approach is by design: it matches

many classic design processes, and is recognizable to designers
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and engineers in the distributed systems field, yet each element

includes key innovations.

The Overall Process (OP) is executed iteratively. It oper-

ates as an BDC and, hierarchically, its more complex design
stages can also operate as BDCs. This design of the OP allows

the designers to partition into manageable parts the inherently

complex process of solving the problems typical of MCS

design, e.g., formulating requirements, creating believable

designs8. The hierarchical nature of the OP further facilitates

learning the process by practitioners: once a practitioner has

learned the BDC, they can apply it several times in the OP.

The OP has one more important feature: in each iteration,

each of its stages can be skipped as needed. By not forcing the

designer to traverse unnecessary elements, the OP allows each

iteration to be tailored to the remaining parts of the problem

to be solved, and to the remaining time and other resources.

We conjecture this can lead to designerly thinking (see Sec-

tion III-A).

The OP elements: Figure 8 depicts the OP. Given a

design problem, its BDC spans elements 1–8, with various

groupings allowing for finer-grained iteration. In the overall

BDC process, elements (5) and (7), which can include various

types of prototype implementation and of experimentation,

respectively, can be complex. When this complexity occurs,

the designers need to expand them each into one BDC.

Similarly, Element (8), on reporting, engineering, and public

dissemination, can further expand into separate BDC processes

for publishing articles, free open-access software (FOSS), and

FAIR [46] or free open-access data (FOAD); we explain this

element in Section III-F.

Stopping criteria: As any iterative process, BDC stops

when meeting a predefined set of: (1) finding a single answer

that satisfices [30, p.27], that is, gives solutions that are “good

enough”, or, where possible, optimizes; (2) finding a few

answers, forming a portfolio to allow a human reviewer (e.g.,

a client) to quickly select one; (3) finding many answers,

forming a systematic design, that allows an expert reviewer

or system to select one; (4) finding all answers, resulting

in design space exhaustion and allowing experts across the

community to discuss or select results; (5) running out of time

or other resources (e.g., funding).

BDC can, but does not guarantee success: Because it

admits the stopping criterion 5, the BDC does not guarantee

a result. In our experience so far, following the OP process

has a good probability of success, making pragmatic and

innovative designs likely within the time- and resource-budget.

We present experimental evidence for this in Section VI.

8That the result is believable is the core of the epistemological problem of
design [12, Loc.972]. A design that does not solve the problem believably
is not acceptable as good design; in our experience, this argument is
commonly made to reject articles that propose designs. This is even more
important for MCS-designs, because such designs are unlikely to be analyzed
experimentally to the full extent of their intended application. In other words,
many designs will at best be shown as believable, through narrow laboratory
experiments, so they must be at least believable to add value to the community.
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Fig. 8. The ATLARGE design process.

F. Dissemination Processes for MCS Design

The ATLARGE design framework also considers various

forms of dissemination typical for MCS, related to reports,

software, and data. Each of these means of dissemination

is based on some form of design; for example, designing

the reports to be published as peer-reviewed articles. Thus,

for each, the framework proposes design-based processes;

in essence, smaller versions of the framework itself, and in

particular of the BDC (see Section III-E).

Good dissemination should increase the likelihood of good

designs. Although the dissemination of reports, software, and

data can be achieved through much intuition, expertise, and

by following best-practices in the respective fields, in practice

many of the designs for dissemination are poor. Best-practices

include (too?) many tools, e.g., collaborative editing using

a tool such as Overleaf; collaborative FOSS development

using CI/CD tools such as Travis CI and customized solu-

tions [47]; and sharing code and data on archives such as

GitHub and Zenodo, respectively. The quality of dissemination

practices has not been studied extensively, but the symptoms

are telling, as introduced in Section II-C. Moreover, we have

observed [48] cases of design under-specification, that is,

specification that does not permit the reproduction of either

the designs themselves or of their intended results, even with

adequate expertise.
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Principle

Type (Section) Index Key aspects

Highest (§IV-A) P1 design of design

Systems P2 age of distributed ecosystems

(§IV-B) P3 NFRs, phenomena

P4 RM&S, self-awareness

Peopleware P5 education in design

(§IV-C) P6 pragmatic, innovative, ethical

Methodology P7 design science, practice, culture

(§IV-D) P8 evolution and emergence

TABLE II
THE KEY PRINCIPLES OF MCS DESIGN.

IV. DESIGN PRINCIPLES OF MCS
We introduce in this section a set of core principles for

MCS design. Table II summarizes the principles.

A. Highest Principle

P1: Good design processes foster good system designs.

We have argued for this principle in Section II. The highest

design principle holds that MCS design must be designed, not

left only to intuition and selective experience.

B. Systems Principles

P2: This is the Age of Distributed Ecosystems.

As stated in Section II-E, the evolution of distributed

systems into ecosystems led to important new problems and

solutions. This principle argues for an approach to design

where the designer is constantly aware of this fact.

P3: Dynamic non-functional properties and phenomena
are first-class concerns.

P4: Resource Management and Scheduling, and its
interplay with various sources of information to achieve
local and global Self-Awareness, are key concerns.

Principles P3 and P4 are consequences of MCS problems

always including dynamic and emergent elements. Good MCS

designs must consider complex SLAs, emergent phenomena,

information-rich decision-making, etc.

C. Peopleware Principles

Popular distributed ecosystems service hundreds of millions

daily. It is not uncommon for a typical service to call into

execution hundreds of hidden systems. This combination of

high complexity and responsibility puts pressure on the human

resources—the peopleware.

Inspired by the software industry’s struggle to manage and

develop its human resources, we explicitly set principles about

peopleware.

P5: Education practices for MCS must ensure the
competence and integrity needed for experimenting,
creating, and operating ecosystems.

Because the complexity and responsibility of the job has

increased considerably over the past couple of decades, high-

quality design education should become a core principle of

MCS. With proper training, the community will remain able

to produce designs significantly better than early, student-like

attempts (see Figure 4), and avoid a culture of hacking that

does not work long-term. Education on the ethics of design is

also a must, if the community is to avoid even the most basic

traps, such as engendering bias and disregarding privacy.

P6: Design communities can foster and curate prag-
matic, innovative, and ethical design practices.

The community is already structured to foster and curate

designs (see Section II-B). This principle extends this structure

to include shared tools and environments for developing and

evolving designs: shared datasets and benchmarks, testing

infrastructure available to many, common repositories of and

documents about operational patterns, online virtual laborato-

ries for global coursework and training, etc. These are elements

that greatly facilitate design, and make it pragmatic by linking

academia and industry. The community is also best-equipped

to understand and explain the ethics of the field, and further

to handle ethical risks.

D. Methodological Principles

P7: We understand and create together a science,
practice, and culture of MCS design.

So far, design has not been treated as a scientific subject

in the field of distributed systems. However, design should

become such a subject, because it meets the requirements ex-

plained by Denning [49, p.32]: (i) MCS design is a pervasive

phenomenon, which we try to understand, use, and control; (ii)

both artificial and natural processes are at play (designs lead

to real-world artifacts); (iii) we aim to gain meaningful and

non-trivial understanding of the phenomenon; (iv) we aim to

make our findings reproducible, so that good designs become

more likely, consequence of falsifiable theories and models;

etc.

P8: We are aware of the history and evolution of MCS

designs, key debates, and evolving patterns.

Unlike other exact results in distributed systems, design is

prescriptive, and often discursive. This makes it subject to

debate and interdisciplinary expertise. To improve design, we

need to make use also of the key instruments of empirical

research, including exploring the history of the field, surveying

the expert view, understanding the key debates and their

ongoing resolution (as Tedre does for the whole field of

computer science [41]), etc.
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Challenge

Type (Sec.) Index Key aspects Pr.

Highest C1 Design of design P1

Principle C2 („) What is good design? P1

(§V-A) C3 („) Design space exploration P1

Systems C4 Design for ecosystems P2

(§V-B) C5 (‹) Catalog for MCS design P3–4

Peopleware C6 (‹) Education, curriculum P5

(§V-C) C7 (‹) Community engagement P6

Methodology C8 (‹) Documenting designs P5–8

(§V-D) C9 („) Design in practice P7–8

C10 (‹) Organizational similarity P7–8

(‹) Appears only in the extended version [50].

(„) Summarized here, see extended version [50].

TABLE III
A SHORTLIST OF THE CHALLENGES RAISED BY MCS.

V. TEN CHALLENGES FOR MCS DESIGN

Many challenges must be overcome before the principles

in Section IV can give us a solid basis for design. Known

challenges begin with making the highest principle, of MCS

design being based on a design rather than on intuition, a

reality. Challenges appear also related to systems, peopleware,

and methodological aspects. We give in the following a non-

exhaustive list of ten challenges for MCS design.

A. Challenges Related to the Highest Principle

C1: The design of design [11]. Creating processes to en-

able and facilitate pragmatic and innovative MCS designs.

The diversity of already existing design processes (see also

Section VII) can come as a surprise to the MCS designer,

and even to the best of system designers [11, Part I]. Yet, the

challenge of designing the MCS design remains open.

First, as we explain in Section VII, much exploration,

combination, and innovation is still possible. The framework

we propose in this work has been tested only by one research

group, albeit large and long-lasting; new designs of (MCS)

design could prove vastly superior.

Second, as the following challenges indicate, we have not

yet understood the full extent of the problem raised by MCS

design. We envision new aspects will become relevant, leading

to a co-evolving problem-solution.

C2: („) Understand what is good design.

Currently, the community relies largely on human experts

to assess and curate designs. (In contrast, in hardware design,

design space exploration has been largely automated.) We pose

as an open challenge understanding (automatically) what is

good design. This is not easy.

First, top venues use criteria such as “degree of innovation”

and “quality of the approach”, but their discrete formulation

may ask reviewers to overfit their assessment to a quantitative

estimation. Consequently, as exemplified in Figure 3, many

scores cluster around the middle of the given range, leading

to difficulties in separating the better designs from their near-

equivalents. What alternative approach could be used?

Second, reviewers often also introduce in their assessment

other criteria that have never been analyzed thoroughly. For

example, simple designs are valued, which seems reasonable

because simple designs foster system maintainability; but

the evidence simplicity is the right trade-off between the

quality of the approach and maintainability, or even a common

understanding of what makes a system simple, are lacking.

Other criteria, such as balance of the approach or another

(semi-)aesthetic aspect (e.g., “elegant design”), have also not

been studied. This contrasts with the nature of real-world

ecosystems, which are messy by nature, and which combine

various designs created by different organizational cultures.

C3: („) Simulation-based approaches and experimentation

for design space exploration. Calibration and reproducibil-

ity are key.

In maze-solving, it is known that finding an exit is much

harder when the alternatives are numerous than for a straight

path. Yet, in our field, the complexity and the number of

alternatives considered and eliminated before the design has

emerged, or more broadly the characteristics of the design

space, are rarely discussed in our articles or by their reviewers.

How to characterize the broad and diverse design spaces

available in MCS design?

B. Systems Challenges

C4: Design for MCS, not for individual systems.

We see as the grand challenge of MCS design to understand

how the resulting design will fit in an entire ecosystems. Typ-

ical questions include: How to enable and how to future-proof

the design of systems that need to interoperate, especially

dynamically, at runtime? For example, how to enable cross-

cloud operation, service delegation and federated composition,

and geo-distributed data use? Is this even achievable with high

likelihood of success, when ecosystems combine organically

designs from different organizations and business units, and

thus suffer the consequences of Melvin Conway’s empirical

law [29] that designs “by committee” are likely to fail?

Current approaches already reveal patterns in the core topics

pursued by the community. These include [1]: (i) adaptation

and self-awareness in ecosystems, (ii) ecosystem navigation:

find and solve common problems of comparison, selection,

composition, replacement, adaptation, and operation; (iii) dis-

covering the new world: creating designs responding to new

modes of use; (iv) the challenge to support non-functional

requirements (see P3); (v) the ecosystem-scheduling chal-

lenge: design scheduling approaches to be flexible enough to

represent MCS needs, diversity, and heterogeneity, and solve

both the provisioning and the allocation problems.
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Addressing this challenge could also start from understand-

ing the workload and relative importance of individual com-

ponents in current ecosystems. This could give quantitative

evidence that some components are naturally more important

than others, and thus focus the community efforts. One of the

likely steps in this sense is to observe pragmatically which part

of the current ecosystem is taking much engineering time, and

re-design that part into “‹-as-a-Service”.

C5: Establish a catalog of components for MCS design.

Such a catalog would consist of design principles, known

architectural and operational patterns, etc. Useful catalogs are

a known approach for settled fields [51], [52], but how to build

a useful catalog for MCS designs?

C. Peopleware Challenges

C6: (‹) Create a teachable common body of knowledge

for MCS designs, focusing on pragmatism, innovation,

and ethics. Design effective teaching practices for this

curriculum.

C7: (‹) Create communities and environments for people

to engage with the design and operation of ecosystems, to

demonstrate and explain operations.

D. Methodological Challenges

C8: (‹) Design a formalism for documenting designs.

C9: („) Understand MCS design in practice. How and

when do MCS practitioners design what they design?

We know normal abduction is commonly used in engineer-

ing [13, Ch.5] [11, Part I], especially coupled with complex

implementation and realization processes [8]. However, the

extent and approach of using design abduction in practice

are not currently known. The “When?” is also important; for

example, design used to be a static process done at the start

of projects, but in some dynamic organizations it is now part

of the weekly sprints and helps the DevOps teams respond

quickly. In consultancy, design may encounter strict time

constraints, and also need to address unusual requirements.

C10: (‹) Organizational similarity in MCS design.

VI. EXPERIMENTS WITH THE DESIGN FRAMEWORK

We have used the ATLARGE design framework as our main

approach to design for the past decade. Effectively, we have

designed its various processes, conducted experiments with

them, and refined them as we uncovered the many problems

a research group faces in creating pragmatic and innovative

MCS designs. (Our designs are also ethical, as assessed by

our reviewers, institutions, and funding agencies.)

We summarize in Table IV our use of the ATLARGE

design framework for over a decade, for a broad range of

MCS designs: (1) co-evolving understanding, and protocol

Section Experiment Key aspects

(‹) §6.1 P2P Protocol/Sys. design

(‹) §6.2 MMOG Ecosystem, NFRs

(‹) §6.3 DC management RM&S, ref.archi.

(‹) §6.4 Serverless, FaaS Design in new ecosystem

(‹) §6.5 Graphalytics Ecosystem, DevOps

(‹) §6.6 Portfolio scheduling System design

(‹) §6.7 Autoscaling Experiment design

(‹) Appears only in the extended version [50].

TABLE IV
EXPERIMENTS WITH THE ATLARGE DESIGN FRAMEWORK.

and system design for Peer-to-Peer systems [50, §6.1]; (2)

design for online gaming ecosystems [50, §6.2], as an example

of designing in rapidly changing ecosystems operating under

strict NFRs; (3) design for datacenter ecosystems [50, §6.3],

as an example of evolving understanding of how the field’s

reference architecture is emerging; (4) design for serverless

ecosystems [50, §6.4], as an example of how the ATLARGE

design process fosters collaboration between diverse teams;

(5) the design of the Graphalytics ecosystem [50, §6.5],

as an example of DevOps support; (6) design for portfolio

scheduling [50, §6.6], as an example of co-evolving a detailed

system-level design; (7) the design of experiments in autoscal-

ing [50, §6.7], as an example of designing both real-world and

simulation-based experiments.

Overall, we conclude the ATLARGE design framework

passes the following criteria for success:

1) It allow us to co-evolve problems and their solutions,

even for problems with very successful solutions, or for

very challenging problems with no or few solutions;

2) It help us identify “hot” problems, and make scientific

discoveries with impact on the community;

3) It enables us to create pragmatic and innovative designs,

as assessed by our own team and by the expert reviewers;

4) It keeps our design activity fit to receive competitive

funding from academic and industrial funding organiza-

tions, and interesting and motivating to attract a diverse

group of young researchers;

5) It results in publications accepted by high-quality

venues, which we see as proxies of high-quality designs

and results, and foster other useful results ancillary

to good design practices (e.g., publishing high-quality

software and data artifacts).

We also conclude that the design methods from software

engineering, including SCRUM and agile methods [9], albeit

useful, do not cover the system-level elements needed in the

design of distributed systems and ecosystems.

VII. RELATED WORK

In this section, we compare our and related work. We

expand greatly this section in our technical report [50], by

further comparing this work with design in computer systems,

in software engineering, and in general.

1775



Overall novelty: The ATLARGE design framework com-

bines elements of 2010s design thinking with the specifics of

MCS design. The former makes it unique among published de-

sign frameworks in distributed systems. For example, hardware

design is a well-established field of design, but as noted by

Brooks it has not adopted the new ways of design thinking [11,

Part I]. The latter makes it unique among design frameworks.

For example, works of similar scope address the design of

mechanical systems [51], [53], but their physical properties

makes them radically different from distributed systems.

VIII. CONCLUSION

Responding to the needs of an increasingly digital and

knowledge-based society, in this work we explicitly posit that

design is a key area of research for distributed systems and

ecosystems (MCS), and propose a vision to establish the

theory and practice of MCS design.

Ours is the first attempt to understand the problem of MCS

design. We give qualitative and quantitative evidence of the

extent of the problem, and propose requirements derived from

general design processes and from the specific needs of MCS.

We design the ATLARGE design framework around the

central premise that design is fundamentally different from

science and engineering, requiring its own way of thinking

and processes. Responding to requirements, the framework

combines emerging theories about design thinking with several

MCS-focused design processes, e.g., for co-evolving problem-

designs, for problem-finding and -solving, and for disseminat-

ing the results. We have a decade-long experience with this

framework; in our experience, it can lead to pragmatic and

innovative designs in diverse fields: P2P systems, datacenter

ecosystems, cloud computing, MMOGS, graph processing, etc.

Our vision also includes a set of core principles and

challenges of MCS design, in the four broad categories related

to the central premise, systems, peopleware, and method. We

have started to address the research agenda formulated in this

article. We hope this vision will stimulate a larger community

to join us in improving the design processes used in distributed

systems and ecosystems. Everyone (trained) can design!
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